/* ################################################################################ # # r8168 is the Linux device driver released for RealTek RTL8168B/8111B, # RTL8168C/8111C, RTL8168CP/8111CP, RTL8168D/8111D, and RTL8168DP/8111DP # Gigabit Ethernet controllers with PCI-Express interface. # # Copyright(c) 2009 Realtek Semiconductor Corp. All rights reserved. # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation; either version 2 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program; if not, see . # # Author: # Realtek NIC software team # No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan # ################################################################################ */ /* * This product is covered by one or more of the following patents: * US5,307,459, US5,434,872, US5,732,094, US6,570,884, US6,115,776, and US6,327,625. */ /* * This driver is modified from r8169.c in Linux kernel 2.6.18 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) #include #include #endif//LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) #include #include #include #include "r8168.h" #include "r8168_asf.h" #include "rtl_eeprom.h" /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static const int max_interrupt_work = 20; /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static const int multicast_filter_limit = 32; #define _R(NAME,MAC,RCR,MASK, JumFrameSz) \ { .name = NAME, .mcfg = MAC, .RCR_Cfg = RCR, .RxConfigMask = MASK, .jumbo_frame_sz = JumFrameSz } static const struct { const char *name; u8 mcfg; u32 RCR_Cfg; u32 RxConfigMask; /* Clears the bits supported by this chip */ u32 jumbo_frame_sz; } rtl_chip_info[] = { _R("RTL8168B/8111B", CFG_METHOD_1, (Reserved2_data << Reserved2_shift) | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_4k), _R("RTL8168B/8111B", CFG_METHOD_2, (Reserved2_data << Reserved2_shift) | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_4k), _R("RTL8168B/8111B", CFG_METHOD_3, (Reserved2_data << Reserved2_shift) | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_4k), _R("RTL8168C/8111C", CFG_METHOD_4, RxCfg_128_int_en | RxCfg_fet_multi_en | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_6k), _R("RTL8168C/8111C", CFG_METHOD_5, RxCfg_128_int_en | RxCfg_fet_multi_en | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_6k), _R("RTL8168C/8111C", CFG_METHOD_6, RxCfg_128_int_en | RxCfg_fet_multi_en | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_6k), _R("RTL8168CP/8111CP", CFG_METHOD_7, RxCfg_128_int_en | RxCfg_fet_multi_en | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_6k), _R("RTL8168CP/8111CP", CFG_METHOD_8, RxCfg_128_int_en | RxCfg_fet_multi_en | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_6k), _R("RTL8168D/8111D", CFG_METHOD_9, RxCfg_128_int_en | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_9k), _R("RTL8168D/8111D", CFG_METHOD_10, RxCfg_128_int_en | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_9k), _R("RTL8168DP/8111DP", CFG_METHOD_11, RxCfg_128_int_en | (RX_DMA_BURST << RxCfgDMAShift), 0xff7e1880, Jumbo_Frame_9k), }; #undef _R static struct pci_device_id rtl8168_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8168), }, {0,}, }; MODULE_DEVICE_TABLE(pci, rtl8168_pci_tbl); static int rx_copybreak = 200; static int use_dac; static struct { u32 msg_enable; } debug = { -1 }; /* media options */ #define MAX_UNITS 8 static int speed[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; static int duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; static int autoneg[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; MODULE_AUTHOR("Realtek and the Linux r8168 crew "); MODULE_DESCRIPTION("RealTek RTL-8168 Gigabit Ethernet driver"); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) MODULE_PARM(speed, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(autoneg, "1-" __MODULE_STRING(MAX_UNITS) "i"); #else static int num_speed = 0; static int num_duplex = 0; static int num_autoneg = 0; module_param_array(speed, int, &num_speed, 0); module_param_array(duplex, int, &num_duplex, 0); module_param_array(autoneg, int, &num_autoneg, 0); #endif MODULE_PARM_DESC(speed, "force phy operation. Deprecated by ethtool (8)."); MODULE_PARM_DESC(duplex, "force phy operation. Deprecated by ethtool (8)."); MODULE_PARM_DESC(autoneg, "force phy operation. Deprecated by ethtool (8)."); module_param(rx_copybreak, int, 0); MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); module_param(use_dac, int, 0); MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot."); #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) module_param_named(debug, debug.msg_enable, int, 0); MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)"); #endif//LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) MODULE_LICENSE("GPL"); MODULE_VERSION(RTL8168_VERSION); static void rtl8168_sleep_rx_enable(struct net_device *dev); static void rtl8168_dsm(struct net_device *dev, int dev_state); static void rtl8168_esd_timer(unsigned long __opaque); static void rtl8168_link_timer(unsigned long __opaque); static void rtl8168_tx_clear(struct rtl8168_private *tp); static void rtl8168_rx_clear(struct rtl8168_private *tp); static int rtl8168_open(struct net_device *dev); static int rtl8168_start_xmit(struct sk_buff *skb, struct net_device *dev); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) static irqreturn_t rtl8168_interrupt(int irq, void *dev_instance, struct pt_regs *regs); #else static irqreturn_t rtl8168_interrupt(int irq, void *dev_instance); #endif static int rtl8168_init_ring(struct net_device *dev); static void rtl8168_hw_start(struct net_device *dev); static int rtl8168_close(struct net_device *dev); static void rtl8168_set_rx_mode(struct net_device *dev); static void rtl8168_tx_timeout(struct net_device *dev); static struct net_device_stats *rtl8168_get_stats(struct net_device *dev); static int rtl8168_rx_interrupt(struct net_device *, struct rtl8168_private *, void __iomem *, u32 budget); static int rtl8168_change_mtu(struct net_device *dev, int new_mtu); static void rtl8168_down(struct net_device *dev); static int rtl8168_set_mac_address(struct net_device *dev, void *p); void rtl8168_rar_set(struct rtl8168_private *tp, uint8_t *addr, uint32_t index); static void rtl8168_tx_desc_init(struct rtl8168_private *tp); static void rtl8168_rx_desc_init(struct rtl8168_private *tp); static void rtl8168_nic_reset(struct net_device *dev); static void rtl8168_phy_power_up (struct net_device *dev); static void rtl8168_phy_power_down (struct net_device *dev); static int rtl8168_set_speed(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex); #ifdef CONFIG_R8168_NAPI static int rtl8168_poll(napi_ptr napi, napi_budget budget); #endif static u16 rtl8168_intr_mask = SYSErr | LinkChg | RxDescUnavail | TxErr | TxOK | RxErr | RxOK; static const u16 rtl8168_napi_event = RxOK | RxDescUnavail | RxFIFOOver | TxOK | TxErr; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) #undef ethtool_ops #define ethtool_ops _kc_ethtool_ops struct _kc_ethtool_ops { int (*get_settings)(struct net_device *, struct ethtool_cmd *); int (*set_settings)(struct net_device *, struct ethtool_cmd *); void (*get_drvinfo)(struct net_device *, struct ethtool_drvinfo *); int (*get_regs_len)(struct net_device *); void (*get_regs)(struct net_device *, struct ethtool_regs *, void *); void (*get_wol)(struct net_device *, struct ethtool_wolinfo *); int (*set_wol)(struct net_device *, struct ethtool_wolinfo *); u32 (*get_msglevel)(struct net_device *); void (*set_msglevel)(struct net_device *, u32); int (*nway_reset)(struct net_device *); u32 (*get_link)(struct net_device *); int (*get_eeprom_len)(struct net_device *); int (*get_eeprom)(struct net_device *, struct ethtool_eeprom *, u8 *); int (*set_eeprom)(struct net_device *, struct ethtool_eeprom *, u8 *); int (*get_coalesce)(struct net_device *, struct ethtool_coalesce *); int (*set_coalesce)(struct net_device *, struct ethtool_coalesce *); void (*get_ringparam)(struct net_device *, struct ethtool_ringparam *); int (*set_ringparam)(struct net_device *, struct ethtool_ringparam *); void (*get_pauseparam)(struct net_device *, struct ethtool_pauseparam*); int (*set_pauseparam)(struct net_device *, struct ethtool_pauseparam*); u32 (*get_rx_csum)(struct net_device *); int (*set_rx_csum)(struct net_device *, u32); u32 (*get_tx_csum)(struct net_device *); int (*set_tx_csum)(struct net_device *, u32); u32 (*get_sg)(struct net_device *); int (*set_sg)(struct net_device *, u32); u32 (*get_tso)(struct net_device *); int (*set_tso)(struct net_device *, u32); int (*self_test_count)(struct net_device *); void (*self_test)(struct net_device *, struct ethtool_test *, u64 *); void (*get_strings)(struct net_device *, u32 stringset, u8 *); int (*phys_id)(struct net_device *, u32); int (*get_stats_count)(struct net_device *); void (*get_ethtool_stats)(struct net_device *, struct ethtool_stats *, u64 *); } *ethtool_ops = NULL; #undef SET_ETHTOOL_OPS #define SET_ETHTOOL_OPS(netdev, ops) (ethtool_ops = (ops)) #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) //#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,5) #ifndef netif_msg_init #define netif_msg_init _kc_netif_msg_init /* copied from linux kernel 2.6.20 include/linux/netdevice.h */ static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) { /* use default */ if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) return default_msg_enable_bits; if (debug_value == 0) /* no output */ return 0; /* set low N bits */ return (1 << debug_value) - 1; } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,5) #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,22) static inline void eth_copy_and_sum (struct sk_buff *dest, const unsigned char *src, int len, int base) { memcpy (dest->data, src, len); } #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,22) #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* copied from linux kernel 2.6.20 /include/linux/time.h */ /* Parameters used to convert the timespec values: */ #define MSEC_PER_SEC 1000L /* copied from linux kernel 2.6.20 /include/linux/jiffies.h */ /* * Change timeval to jiffies, trying to avoid the * most obvious overflows.. * * And some not so obvious. * * Note that we don't want to return MAX_LONG, because * for various timeout reasons we often end up having * to wait "jiffies+1" in order to guarantee that we wait * at _least_ "jiffies" - so "jiffies+1" had better still * be positive. */ #define MAX_JIFFY_OFFSET ((~0UL >> 1)-1) /* * Convert jiffies to milliseconds and back. * * Avoid unnecessary multiplications/divisions in the * two most common HZ cases: */ static inline unsigned int _kc_jiffies_to_msecs(const unsigned long j) { #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) return (MSEC_PER_SEC / HZ) * j; #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); #else return (j * MSEC_PER_SEC) / HZ; #endif } static inline unsigned long _kc_msecs_to_jiffies(const unsigned int m) { if (m > _kc_jiffies_to_msecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) return m * (HZ / MSEC_PER_SEC); #else return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC; #endif } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11) /* copied from linux kernel 2.6.12.6 /include/linux/pm.h */ typedef int __bitwise pci_power_t; /* copied from linux kernel 2.6.12.6 /include/linux/pci.h */ typedef u32 __bitwise pm_message_t; #define PCI_D0 ((pci_power_t __force) 0) #define PCI_D1 ((pci_power_t __force) 1) #define PCI_D2 ((pci_power_t __force) 2) #define PCI_D3hot ((pci_power_t __force) 3) #define PCI_D3cold ((pci_power_t __force) 4) #define PCI_POWER_ERROR ((pci_power_t __force) -1) /* copied from linux kernel 2.6.12.6 /drivers/pci/pci.c */ /** * pci_choose_state - Choose the power state of a PCI device * @dev: PCI device to be suspended * @state: target sleep state for the whole system. This is the value * that is passed to suspend() function. * * Returns PCI power state suitable for given device and given system * message. */ pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) { if (!pci_find_capability(dev, PCI_CAP_ID_PM)) return PCI_D0; switch (state) { case 0: return PCI_D0; case 3: return PCI_D3hot; default: printk("They asked me for state %d\n", state); // BUG(); } return PCI_D0; } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11) #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9) /** * msleep_interruptible - sleep waiting for waitqueue interruptions * @msecs: Time in milliseconds to sleep for */ #define msleep_interruptible _kc_msleep_interruptible unsigned long _kc_msleep_interruptible(unsigned int msecs) { unsigned long timeout = _kc_msecs_to_jiffies(msecs); while (timeout && !signal_pending(current)) { set_current_state(TASK_INTERRUPTIBLE); timeout = schedule_timeout(timeout); } return _kc_jiffies_to_msecs(timeout); } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9) #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* copied from linux kernel 2.6.20 include/linux/sched.h */ #ifndef __sched #define __sched __attribute__((__section__(".sched.text"))) #endif /* copied from linux kernel 2.6.20 kernel/timer.c */ signed long __sched schedule_timeout_uninterruptible(signed long timeout) { __set_current_state(TASK_UNINTERRUPTIBLE); return schedule_timeout(timeout); } /* copied from linux kernel 2.6.20 include/linux/mii.h */ #undef if_mii #define if_mii _kc_if_mii static inline struct mii_ioctl_data *if_mii(struct ifreq *rq) { return (struct mii_ioctl_data *) &rq->ifr_ifru; } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) static void mdio_write(void __iomem *ioaddr, int RegAddr, int value) { int i; RTL_W32(PHYAR, PHYAR_Write | (RegAddr & PHYAR_Reg_Mask) << PHYAR_Reg_shift | (value & PHYAR_Data_Mask)); for (i = 0; i < 10; i++) { udelay(100); /* Check if the RTL8168 has completed writing to the specified MII register */ if (!(RTL_R32(PHYAR) & PHYAR_Flag)) break; } } static int mdio_read(void __iomem *ioaddr, int RegAddr) { int i, value = -1; RTL_W32(PHYAR, PHYAR_Read | (RegAddr & PHYAR_Reg_Mask) << PHYAR_Reg_shift); for (i = 0; i < 10; i++) { udelay(100); /* Check if the RTL8168 has completed retrieving data from the specified MII register */ if (RTL_R32(PHYAR) & PHYAR_Flag) { value = (int) (RTL_R32(PHYAR) & PHYAR_Data_Mask); break; } } return value; } static void rtl8168_ocp_gphy_write(void __iomem *ioaddr, int RegAddr, int value) { int ocp_wcnt; RTL_W32(OCPDR, OCPDR_Write | (RegAddr & OCPDR_Reg_Mask) << OCPDR_GPHY_Reg_shift | (value & OCPDR_Data_Mask)); RTL_W32(OCPAR, OCPAR_GPHY_Write); RTL_W32(EPHY_RXER_NUM, 0); for (ocp_wcnt = 0; ocp_wcnt < 100; ocp_wcnt++) { mdelay(2); if ( !(RTL_R32(OCPAR) & OCPAR_Flag)) break; } } static int rtl8168_ocp_gphy_read(void __iomem *ioaddr, int RegAddr) { int ocp_rcnt, value = 0xFFFF; RTL_W32(OCPDR, OCPDR_Read | (RegAddr & OCPDR_Reg_Mask) << OCPDR_GPHY_Reg_shift); RTL_W32(OCPAR, OCPAR_GPHY_Write); RTL_W32(EPHY_RXER_NUM, 0); for (ocp_rcnt = 0; ocp_rcnt < 100; ocp_rcnt++) { mdelay(2); if ( !(RTL_R32(OCPAR) & OCPAR_Flag)) break; } RTL_W32(OCPAR, OCPAR_GPHY_Read); value = (int) (RTL_R32(OCPDR) & OCPDR_Data_Mask); return value; } static void rtl8168_ephy_write(void __iomem *ioaddr, int RegAddr, int value) { int i; RTL_W32(EPHYAR, EPHYAR_Write | (RegAddr & EPHYAR_Reg_Mask) << EPHYAR_Reg_shift | (value & EPHYAR_Data_Mask)); for (i = 0; i < 10; i++) { udelay(100); /* Check if the RTL8168 has completed EPHY write */ if (!(RTL_R32(EPHYAR) & EPHYAR_Flag)) break; } udelay(20); } static u16 rtl8168_ephy_read(void __iomem *ioaddr, int RegAddr) { int i; u16 value = 0xffff; RTL_W32(EPHYAR, EPHYAR_Read | (RegAddr & EPHYAR_Reg_Mask) << EPHYAR_Reg_shift); for (i = 0; i < 10; i++) { udelay(100); /* Check if the RTL8168 has completed EPHY read */ if (RTL_R32(EPHYAR) & EPHYAR_Flag) { value = (u16) (RTL_R32(EPHYAR) & EPHYAR_Data_Mask); break; } } udelay(20); return value; } static void rtl8168_csi_write(void __iomem *ioaddr, int addr, int value) { int i; RTL_W32(CSIDR, value); RTL_W32(CSIAR, CSIAR_Write | CSIAR_ByteEn << CSIAR_ByteEn_shift | (addr & CSIAR_Addr_Mask)); for (i = 0; i < 10; i++) { udelay(100); /* Check if the RTL8168 has completed CSI write */ if (!(RTL_R32(CSIAR) & CSIAR_Flag)) break; } udelay(20); } int rtl8168_eri_read(void __iomem *ioaddr, int addr, int len, int type) { int i, val_shift, shift = 0; u32 value1 = 0, value2 = 0, mask; if (len > 4 || len <= 0) return -1; while (len > 0) { val_shift = addr % ERIAR_Addr_Align; addr = addr & ~0x3; RTL_W32(ERIAR, ERIAR_Read | type << ERIAR_Type_shift | ERIAR_ByteEn << ERIAR_ByteEn_shift | addr); for (i = 0; i < 10; i++) { udelay(100); /* Check if the RTL8168 has completed ERI read */ if (RTL_R32(ERIAR) & ERIAR_Flag) break; } if (len == 1) mask = (0xFF << (val_shift * 8)) & 0xFFFFFFFF; else if (len == 2) mask = (0xFFFF << (val_shift * 8)) & 0xFFFFFFFF; else if (len == 3) mask = (0xFFFFFF << (val_shift * 8)) & 0xFFFFFFFF; else mask = (0xFFFFFFFF << (val_shift * 8)) & 0xFFFFFFFF; value1 = RTL_R32(ERIDR) & mask; value2 |= (value1 >> val_shift * 8) << shift * 8; if (len <= 4 - val_shift) len = 0; else { len -= (4 - val_shift); shift = 4 - val_shift; addr += 4; } } return value2; } int rtl8168_eri_write(void __iomem *ioaddr, int addr, int len, int value, int type) { int i, val_shift, shift = 0; u32 value1 = 0, mask; if (len > 4 || len <= 0) return -1; while(len > 0) { val_shift = addr % ERIAR_Addr_Align; addr = addr & ~0x3; if (len == 1) mask = (0xFF << (val_shift * 8)) & 0xFFFFFFFF; else if (len == 2) mask = (0xFFFF << (val_shift * 8)) & 0xFFFFFFFF; else if (len == 3) mask = (0xFFFFFF << (val_shift * 8)) & 0xFFFFFFFF; else mask = (0xFFFFFFFF << (val_shift * 8)) & 0xFFFFFFFF; value1 = rtl8168_eri_read(ioaddr, addr, 4, type) & ~mask; value1 |= (((value << val_shift * 8) >> shift * 8)); RTL_W32(ERIDR, value1); RTL_W32(ERIAR, ERIAR_Write | type << ERIAR_Type_shift | ERIAR_ByteEn << ERIAR_ByteEn_shift | addr); for (i = 0; i < 10; i++) { udelay(100); /* Check if the RTL8168 has completed ERI write */ if (!(RTL_R32(ERIAR) & ERIAR_Flag)) break; } if (len <= 4 - val_shift) len = 0; else { len -= (4 - val_shift); shift = 4 - val_shift; addr += 4; } } return 0; } static int rtl8168_csi_read(void __iomem *ioaddr, int addr) { int i, value = -1; RTL_W32(CSIAR, CSIAR_Read | CSIAR_ByteEn << CSIAR_ByteEn_shift | (addr & CSIAR_Addr_Mask)); for (i = 0; i < 10; i++) { udelay(100); /* Check if the RTL8168 has completed CSI read */ if (RTL_R32(CSIAR) & CSIAR_Flag) { value = (int)RTL_R32(CSIDR); break; } } udelay(20); return value; } static void rtl8168_irq_mask_and_ack(void __iomem *ioaddr) { RTL_W16(IntrMask, 0x0000); } static void rtl8168_asic_down(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; rtl8168_nic_reset(dev); rtl8168_irq_mask_and_ack(ioaddr); } static void rtl8168_nic_reset(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int i; if ((tp->mcfg != CFG_METHOD_1) && (tp->mcfg != CFG_METHOD_2) && (tp->mcfg != CFG_METHOD_3) && (tp->mcfg != CFG_METHOD_11)) { RTL_W8(ChipCmd, StopReq | CmdRxEnb | CmdTxEnb); udelay(100); } if (tp->mcfg == CFG_METHOD_11) RTL_W32(RxConfig, RTL_R32(RxConfig) & ~(AcceptErr | AcceptRunt | AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys)); /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 1000; i > 0; i--) { if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; udelay(100); } if (tp->mcfg == CFG_METHOD_11) { RTL_W32(OCPDR, 0x01); RTL_W32(OCPAR, 0x80001038); RTL_W32(OCPDR, 0x01); RTL_W32(OCPAR, 0x00001030); RTL_W32(OCPAR, 0x00001034); for (i = 1000; i > 0; i--) { if ((RTL_R32(OCPDR) & 0xFFFF) == 0) break; udelay(100); } } } static unsigned int rtl8168_xmii_reset_pending(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; unsigned int retval; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); retval = mdio_read(ioaddr, MII_BMCR) & BMCR_RESET; spin_unlock_irqrestore(&tp->phy_lock, flags); return retval; } static unsigned int rtl8168_xmii_link_ok(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; unsigned int retval; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); retval = RTL_R8(PHYstatus) & LinkStatus; spin_unlock_irqrestore(&tp->phy_lock, flags); return retval; } static void rtl8168_xmii_reset_enable(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; int i, val = 0; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, MII_BMCR, mdio_read(ioaddr, MII_BMCR) | BMCR_RESET); spin_unlock_irqrestore(&tp->phy_lock, flags); for(i = 0; i < 2500; i++) { spin_lock_irqsave(&tp->phy_lock, flags); val = mdio_read(ioaddr, MII_BMSR) & BMCR_RESET; spin_unlock_irqrestore(&tp->phy_lock, flags); if(!val) return; mdelay(1); } } static void rtl8168dp_10mbps_gphy_para(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u8 status = RTL_R8(PHYstatus); unsigned long flags; if (tp->mcfg != CFG_METHOD_11) return; if ((status & LinkStatus) && (status & _10bps)) { spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, 0x10, 0x04EE); spin_unlock_irqrestore(&tp->phy_lock, flags); } else { spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, 0x10, 0x01EE); spin_unlock_irqrestore(&tp->phy_lock, flags); } } static void rtl8168_check_link_status(struct net_device *dev, struct rtl8168_private *tp, void __iomem *ioaddr) { unsigned long flags; spin_lock_irqsave(&tp->lock, flags); if (tp->link_ok(dev)) { netif_carrier_on(dev); if (netif_msg_ifup(tp)) printk(KERN_INFO PFX "%s: link up\n", dev->name); } else { if (tp->mcfg == CFG_METHOD_11) { mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x10, 0x01EE); } if (netif_msg_ifdown(tp)) printk(KERN_INFO PFX "%s: link down\n", dev->name); netif_carrier_off(dev); } spin_unlock_irqrestore(&tp->lock, flags); rtl8168dp_10mbps_gphy_para(dev); } static void rtl8168_link_option(int idx, u8 *aut, u16 *spd, u8 *dup) { unsigned char opt_speed; unsigned char opt_duplex; unsigned char opt_autoneg; opt_speed = ((idx < MAX_UNITS) && (idx >= 0)) ? speed[idx] : 0xff; opt_duplex = ((idx < MAX_UNITS) && (idx >= 0)) ? duplex[idx] : 0xff; opt_autoneg = ((idx < MAX_UNITS) && (idx >= 0)) ? autoneg[idx] : 0xff; if ((opt_speed == 0xff) | (opt_duplex == 0xff) | (opt_autoneg == 0xff)) { *spd = SPEED_1000; *dup = DUPLEX_FULL; *aut = AUTONEG_ENABLE; } else { *spd = speed[idx]; *dup = duplex[idx]; *aut = autoneg[idx]; } } static void rtl8168_powerdown_pll(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; if (tp->mcfg == CFG_METHOD_11) return; if (((tp->mcfg == CFG_METHOD_7) || (tp->mcfg == CFG_METHOD_8)) && (RTL_R16(CPlusCmd) & ASF)) { rtl8168_set_speed(dev, AUTONEG_ENABLE, SPEED_100, AUTONEG_ENABLE); return; } if (tp->wol_enabled == WOL_ENABLED) return; rtl8168_phy_power_down(dev); switch (tp->mcfg) { case CFG_METHOD_9: case CFG_METHOD_10: RTL_W8(PMCH, RTL_R8(PMCH) & ~BIT_7); break; } } static void rtl8168_powerup_pll(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; if (tp->mcfg == CFG_METHOD_11) return; switch (tp->mcfg) { case CFG_METHOD_9: case CFG_METHOD_10: RTL_W8(PMCH, RTL_R8(PMCH) | BIT_7); break; } rtl8168_phy_power_up(dev); rtl8168_set_speed(dev, tp->autoneg, tp->speed, tp->duplex); } static void rtl8168_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u8 options; wol->wolopts = 0; #define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST) wol->supported = WAKE_ANY; spin_lock_irq(&tp->lock); options = RTL_R8(Config1); if (!(options & PMEnable)) goto out_unlock; options = RTL_R8(Config3); if (options & LinkUp) wol->wolopts |= WAKE_PHY; if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC; options = RTL_R8(Config5); if (options & UWF) wol->wolopts |= WAKE_UCAST; if (options & BWF) wol->wolopts |= WAKE_BCAST; if (options & MWF) wol->wolopts |= WAKE_MCAST; out_unlock: spin_unlock_irq(&tp->lock); } static int rtl8168_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int i; static struct { u32 opt; u16 reg; u8 mask; } cfg[] = { { WAKE_ANY, Config1, PMEnable }, { WAKE_PHY, Config3, LinkUp }, { WAKE_MAGIC, Config3, MagicPacket }, { WAKE_UCAST, Config5, UWF }, { WAKE_BCAST, Config5, BWF }, { WAKE_MCAST, Config5, MWF }, { WAKE_ANY, Config5, LanWake } }; spin_lock_irq(&tp->lock); RTL_W8(Cfg9346, Cfg9346_Unlock); for (i = 0; i < ARRAY_SIZE(cfg); i++) { u8 options = RTL_R8(cfg[i].reg) & ~cfg[i].mask; if (wol->wolopts & cfg[i].opt) options |= cfg[i].mask; RTL_W8(cfg[i].reg, options); } RTL_W8(Cfg9346, Cfg9346_Lock); tp->wol_enabled = (wol->wolopts) ? WOL_ENABLED : WOL_DISABLED; spin_unlock_irq(&tp->lock); return 0; } static void rtl8168_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct rtl8168_private *tp = netdev_priv(dev); strcpy(info->driver, MODULENAME); strcpy(info->version, RTL8168_VERSION); strcpy(info->bus_info, pci_name(tp->pci_dev)); } static int rtl8168_get_regs_len(struct net_device *dev) { return R8168_REGS_SIZE; } static int rtl8168_set_speed_xmii(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int auto_nego = 0; int giga_ctrl = 0; int bmcr_true_force = 0; unsigned long flags; if ((speed != SPEED_1000) && (speed != SPEED_100) && (speed != SPEED_10)) { speed = SPEED_1000; duplex = DUPLEX_FULL; } if ((autoneg == AUTONEG_ENABLE) || (speed == SPEED_1000)) { /*n-way force*/ if ((speed == SPEED_10) && (duplex == DUPLEX_HALF)) { auto_nego |= ADVERTISE_10HALF; } else if ((speed == SPEED_10) && (duplex == DUPLEX_FULL)) { auto_nego |= ADVERTISE_10HALF | ADVERTISE_10FULL; } else if ((speed == SPEED_100) && (duplex == DUPLEX_HALF)) { auto_nego |= ADVERTISE_100HALF | ADVERTISE_10HALF | ADVERTISE_10FULL; } else if ((speed == SPEED_100) && (duplex == DUPLEX_FULL)) { auto_nego |= ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_10HALF | ADVERTISE_10FULL; } else if (speed == SPEED_1000) { giga_ctrl |= ADVERTISE_1000HALF | ADVERTISE_1000FULL; auto_nego |= ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_10HALF | ADVERTISE_10FULL; } //disable flow contorol auto_nego &= ~ADVERTISE_PAUSE_CAP; auto_nego &= ~ADVERTISE_PAUSE_ASYM; tp->phy_auto_nego_reg = auto_nego; tp->phy_1000_ctrl_reg = giga_ctrl; tp->autoneg = autoneg; tp->speed = speed; tp->duplex = duplex; rtl8168_phy_power_up (dev); spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, MII_ADVERTISE, auto_nego); mdio_write(ioaddr, MII_CTRL1000, giga_ctrl); mdio_write(ioaddr, MII_BMCR, BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART); spin_unlock_irqrestore(&tp->phy_lock, flags); } else { /*true force*/ #ifndef BMCR_SPEED100 #define BMCR_SPEED100 0x0040 #endif #ifndef BMCR_SPEED10 #define BMCR_SPEED10 0x0000 #endif if ((speed == SPEED_10) && (duplex == DUPLEX_HALF)) { bmcr_true_force = BMCR_SPEED10; } else if ((speed == SPEED_10) && (duplex == DUPLEX_FULL)) { bmcr_true_force = BMCR_SPEED10 | BMCR_FULLDPLX; } else if ((speed == SPEED_100) && (duplex == DUPLEX_HALF)) { bmcr_true_force = BMCR_SPEED100; } else if ((speed == SPEED_100) && (duplex == DUPLEX_FULL)) { bmcr_true_force = BMCR_SPEED100 | BMCR_FULLDPLX; } spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, MII_BMCR, bmcr_true_force); spin_unlock_irqrestore(&tp->phy_lock, flags); } if (tp->mcfg == CFG_METHOD_11) { if (speed == SPEED_10) { spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x10, 0x04EE); spin_unlock_irqrestore(&tp->phy_lock, flags); } else { spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x10, 0x01EE); spin_unlock_irqrestore(&tp->phy_lock, flags); } } return 0; } static int rtl8168_set_speed(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex) { struct rtl8168_private *tp = netdev_priv(dev); int ret; ret = tp->set_speed(dev, autoneg, speed, duplex); return ret; } static int rtl8168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8168_private *tp = netdev_priv(dev); unsigned long flags; int ret; spin_lock_irqsave(&tp->lock, flags); ret = rtl8168_set_speed(dev, cmd->autoneg, cmd->speed, cmd->duplex); spin_unlock_irqrestore(&tp->lock, flags); return ret; } static u32 rtl8168_get_tx_csum(struct net_device *dev) { return (dev->features & NETIF_F_IP_CSUM) != 0; } static u32 rtl8168_get_rx_csum(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); return tp->cp_cmd & RxChkSum; } static int rtl8168_set_tx_csum(struct net_device *dev, u32 data) { if (data) dev->features |= NETIF_F_IP_CSUM; else dev->features &= ~NETIF_F_IP_CSUM; return 0; } static int rtl8168_set_rx_csum(struct net_device *dev, u32 data) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->lock, flags); if (data) tp->cp_cmd |= RxChkSum; else tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); spin_unlock_irqrestore(&tp->lock, flags); return 0; } #ifdef CONFIG_R8168_VLAN static inline u32 rtl8168_tx_vlan_tag(struct rtl8168_private *tp, struct sk_buff *skb) { return (tp->vlgrp && vlan_tx_tag_present(skb)) ? TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00; } static void rtl8168_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->lock, flags); tp->vlgrp = grp; if (tp->vlgrp) tp->cp_cmd |= RxVlan; else tp->cp_cmd &= ~RxVlan; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_R16(CPlusCmd); spin_unlock_irqrestore(&tp->lock, flags); } static void rtl8168_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) { struct rtl8168_private *tp = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&tp->lock, flags); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,21) if (tp->vlgrp) tp->vlgrp->vlan_devices[vid] = NULL; #else vlan_group_set_device(tp->vlgrp, vid, NULL); #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,21) spin_unlock_irqrestore(&tp->lock, flags); } static int rtl8168_rx_vlan_skb(struct rtl8168_private *tp, struct RxDesc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->opts2); int ret; if (tp->vlgrp && (opts2 & RxVlanTag)) { rtl8168_rx_hwaccel_skb(skb, tp->vlgrp, swab16(opts2 & 0xffff)); ret = 0; } else ret = -1; desc->opts2 = 0; return ret; } #else /* !CONFIG_R8168_VLAN */ static inline u32 rtl8168_tx_vlan_tag(struct rtl8168_private *tp, struct sk_buff *skb) { return 0; } static int rtl8168_rx_vlan_skb(struct rtl8168_private *tp, struct RxDesc *desc, struct sk_buff *skb) { return -1; } #endif static void rtl8168_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u8 status; unsigned long flags; cmd->supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP; spin_lock_irqsave(&tp->phy_lock, flags); cmd->autoneg = (mdio_read(ioaddr, MII_BMCR) & BMCR_ANENABLE) ? 1 : 0; spin_unlock_irqrestore(&tp->phy_lock, flags); cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg; if (tp->phy_auto_nego_reg & ADVERTISE_10HALF) cmd->advertising |= ADVERTISED_10baseT_Half; if (tp->phy_auto_nego_reg & ADVERTISE_10FULL) cmd->advertising |= ADVERTISED_10baseT_Full; if (tp->phy_auto_nego_reg & ADVERTISE_100HALF) cmd->advertising |= ADVERTISED_100baseT_Half; if (tp->phy_auto_nego_reg & ADVERTISE_100FULL) cmd->advertising |= ADVERTISED_100baseT_Full; if (tp->phy_1000_ctrl_reg & ADVERTISE_1000FULL) cmd->advertising |= ADVERTISED_1000baseT_Full; status = RTL_R8(PHYstatus); if (status & _1000bpsF) cmd->speed = SPEED_1000; else if (status & _100bps) cmd->speed = SPEED_100; else if (status & _10bps) cmd->speed = SPEED_10; if (status & TxFlowCtrl) cmd->advertising |= ADVERTISED_Asym_Pause; if (status & RxFlowCtrl) cmd->advertising |= ADVERTISED_Pause; cmd->duplex = ((status & _1000bpsF) || (status & FullDup)) ? DUPLEX_FULL : DUPLEX_HALF; tp->autoneg = cmd->autoneg; tp->speed = cmd->speed; tp->duplex = cmd->duplex; } static int rtl8168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8168_private *tp = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&tp->lock, flags); tp->get_settings(dev, cmd); spin_unlock_irqrestore(&tp->lock, flags); return 0; } static void rtl8168_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { struct rtl8168_private *tp = netdev_priv(dev); unsigned long flags; if (regs->len > R8168_REGS_SIZE) regs->len = R8168_REGS_SIZE; spin_lock_irqsave(&tp->lock, flags); memcpy_fromio(p, tp->mmio_addr, regs->len); spin_unlock_irqrestore(&tp->lock, flags); } static u32 rtl8168_get_msglevel(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); return tp->msg_enable; } static void rtl8168_set_msglevel(struct net_device *dev, u32 value) { struct rtl8168_private *tp = netdev_priv(dev); tp->msg_enable = value; } static const char rtl8168_gstrings[][ETH_GSTRING_LEN] = { "tx_packets", "rx_packets", "tx_errors", "rx_errors", "rx_missed", "align_errors", "tx_single_collisions", "tx_multi_collisions", "unicast", "broadcast", "multicast", "tx_aborted", "tx_underrun", }; struct rtl8168_counters { u64 tx_packets; u64 rx_packets; u64 tx_errors; u32 rx_errors; u16 rx_missed; u16 align_errors; u32 tx_one_collision; u32 tx_multi_collision; u64 rx_unicast; u64 rx_broadcast; u32 rx_multicast; u16 tx_aborted; u16 tx_underun; }; static int rtl8168_get_stats_count(struct net_device *dev) { return ARRAY_SIZE(rtl8168_gstrings); } static void rtl8168_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct rtl8168_counters *counters; dma_addr_t paddr; u32 cmd; ASSERT_RTNL(); counters = pci_alloc_consistent(tp->pci_dev, sizeof(*counters), &paddr); if (!counters) return; RTL_W32(CounterAddrHigh, (u64)paddr >> 32); cmd = (u64)paddr & DMA_32BIT_MASK; RTL_W32(CounterAddrLow, cmd); RTL_W32(CounterAddrLow, cmd | CounterDump); while (RTL_R32(CounterAddrLow) & CounterDump) { if (msleep_interruptible(1)) break; } RTL_W32(CounterAddrLow, 0); RTL_W32(CounterAddrHigh, 0); data[0] = le64_to_cpu(counters->tx_packets); data[1] = le64_to_cpu(counters->rx_packets); data[2] = le64_to_cpu(counters->tx_errors); data[3] = le32_to_cpu(counters->rx_errors); data[4] = le16_to_cpu(counters->rx_missed); data[5] = le16_to_cpu(counters->align_errors); data[6] = le32_to_cpu(counters->tx_one_collision); data[7] = le32_to_cpu(counters->tx_multi_collision); data[8] = le64_to_cpu(counters->rx_unicast); data[9] = le64_to_cpu(counters->rx_broadcast); data[10] = le32_to_cpu(counters->rx_multicast); data[11] = le16_to_cpu(counters->tx_aborted); data[12] = le16_to_cpu(counters->tx_underun); pci_free_consistent(tp->pci_dev, sizeof(*counters), counters, paddr); } static void rtl8168_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch(stringset) { case ETH_SS_STATS: memcpy(data, *rtl8168_gstrings, sizeof(rtl8168_gstrings)); break; } } #undef ethtool_op_get_link #define ethtool_op_get_link _kc_ethtool_op_get_link u32 _kc_ethtool_op_get_link(struct net_device *dev) { return netif_carrier_ok(dev) ? 1 : 0; } #undef ethtool_op_get_sg #define ethtool_op_get_sg _kc_ethtool_op_get_sg u32 _kc_ethtool_op_get_sg(struct net_device *dev) { #ifdef NETIF_F_SG return (dev->features & NETIF_F_SG) != 0; #else return 0; #endif } #undef ethtool_op_set_sg #define ethtool_op_set_sg _kc_ethtool_op_set_sg int _kc_ethtool_op_set_sg(struct net_device *dev, u32 data) { #ifdef NETIF_F_SG if (data) dev->features |= NETIF_F_SG; else dev->features &= ~NETIF_F_SG; #endif return 0; } static struct ethtool_ops rtl8168_ethtool_ops = { .get_drvinfo = rtl8168_get_drvinfo, .get_regs_len = rtl8168_get_regs_len, .get_link = ethtool_op_get_link, .get_settings = rtl8168_get_settings, .set_settings = rtl8168_set_settings, .get_msglevel = rtl8168_get_msglevel, .set_msglevel = rtl8168_set_msglevel, .get_rx_csum = rtl8168_get_rx_csum, .set_rx_csum = rtl8168_set_rx_csum, .get_tx_csum = rtl8168_get_tx_csum, .set_tx_csum = rtl8168_set_tx_csum, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, #ifdef NETIF_F_TSO .get_tso = ethtool_op_get_tso, .set_tso = ethtool_op_set_tso, #endif .get_regs = rtl8168_get_regs, .get_wol = rtl8168_get_wol, .set_wol = rtl8168_set_wol, .get_strings = rtl8168_get_strings, .get_stats_count = rtl8168_get_stats_count, .get_ethtool_stats = rtl8168_get_ethtool_stats, #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) #ifdef ETHTOOL_GPERMADDR .get_perm_addr = ethtool_op_get_perm_addr, #endif #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) }; static void rtl8168_get_mac_version(struct rtl8168_private *tp, void __iomem *ioaddr) { u32 reg,val32; u32 ICVerID; val32 = RTL_R32(TxConfig) ; reg = val32 & 0x7c800000; ICVerID = val32 & 0x00700000; switch(reg) { case 0x30000000: tp->mcfg = CFG_METHOD_1; tp->efuse = EFUSE_NOT_SUPPORT; break; case 0x38000000: if(ICVerID == 0x00000000) { tp->mcfg = CFG_METHOD_2; } else if(ICVerID == 0x00500000) { tp->mcfg = CFG_METHOD_3; } else { tp->mcfg = CFG_METHOD_3; } tp->efuse = EFUSE_NOT_SUPPORT; break; case 0x3C000000: if(ICVerID == 0x00000000) { tp->mcfg = CFG_METHOD_4; } else if(ICVerID == 0x00200000) { tp->mcfg = CFG_METHOD_5; } else if(ICVerID == 0x00400000) { tp->mcfg = CFG_METHOD_6; } else { tp->mcfg = CFG_METHOD_6; } tp->efuse = EFUSE_NOT_SUPPORT; break; case 0x3C800000: if (ICVerID == 0x00100000){ tp->mcfg = CFG_METHOD_7; } else if (ICVerID == 0x00300000){ tp->mcfg = CFG_METHOD_8; } else { tp->mcfg = CFG_METHOD_8; } tp->efuse = EFUSE_NOT_SUPPORT; break; case 0x28000000: if(ICVerID == 0x00100000) { tp->mcfg = CFG_METHOD_9; } else if(ICVerID == 0x00300000) { tp->mcfg = CFG_METHOD_10; } else { tp->mcfg = CFG_METHOD_10; } tp->efuse = EFUSE_SUPPORT; break; case 0x28800000: tp->mcfg = CFG_METHOD_11; tp->efuse = EFUSE_SUPPORT; break; default: tp->mcfg = 0xFFFFFFFF; printk("unknown chip version (%x)\n",reg); break; } } static void rtl8168_print_mac_version(struct rtl8168_private *tp) { int i; for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--) { if (tp->mcfg == rtl_chip_info[i].mcfg){ dprintk("mcfg == %s (%04d)\n", rtl_chip_info[i].name, rtl_chip_info[i].mcfg); return; } } dprintk("mac_version == Unknown\n"); } static u8 rtl8168_efuse_read(struct net_device *dev, u16 reg) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u8 efuse_data; u32 temp; int cnt; if (tp->efuse == EFUSE_NOT_SUPPORT) return EFUSE_READ_FAIL; temp = EFUSE_READ | ((reg & EFUSE_Reg_Mask) << EFUSE_Reg_Shift); RTL_W32(EFUSEAR, temp); do { udelay(100); temp = RTL_R32(EFUSEAR); cnt++; } while (!(temp & EFUSE_READ_OK) && (temp < EFUSE_Check_Cnt)); if (temp == EFUSE_Check_Cnt) efuse_data = EFUSE_READ_FAIL; else efuse_data = (u8)(RTL_R32(EFUSEAR) & EFUSE_Data_Mask); return efuse_data; } static void rtl8168_hw_phy_config(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; unsigned int gphy_val; spin_lock_irqsave(&tp->phy_lock, flags); if (tp->mcfg == CFG_METHOD_1) { mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x0B, 0x94B0); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x12, 0x6096); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x0D, 0xF8A0); } else if (tp->mcfg == CFG_METHOD_2) { mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x0B, 0x94B0); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x12, 0x6096); mdio_write(ioaddr, 0x1F, 0x0000); } else if (tp->mcfg == CFG_METHOD_3) { mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x0B, 0x94B0); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x12, 0x6096); mdio_write(ioaddr, 0x1F, 0x0000); } else if (tp->mcfg == CFG_METHOD_4) { mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x12, 0x2300); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x16, 0x000A); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x12, 0xC096); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x00, 0x88DE); mdio_write(ioaddr, 0x01, 0x82B1); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x08, 0x9E30); mdio_write(ioaddr, 0x09, 0x01F0); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x0A, 0x5500); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x03, 0x7002); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x0C, 0x00C8); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x14, mdio_read(ioaddr, 0x14) | (1 << 5)); mdio_write(ioaddr, 0x0D, mdio_read(ioaddr, 0x0D) & ~(1 << 5)); } else if (tp->mcfg == CFG_METHOD_5) { mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x12, 0x2300); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x16, 0x0F0A); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x00, 0x88DE); mdio_write(ioaddr, 0x01, 0x82B1); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x0C, 0x7EB8); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x06, 0x0761); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x03, 0x802F); mdio_write(ioaddr, 0x02, 0x4F02); mdio_write(ioaddr, 0x01, 0x0409); mdio_write(ioaddr, 0x00, 0xF099); mdio_write(ioaddr, 0x04, 0x9800); mdio_write(ioaddr, 0x04, 0x9000); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x16, mdio_read(ioaddr, 0x16) | (1 << 0)); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x14, mdio_read(ioaddr, 0x14) | (1 << 5)); mdio_write(ioaddr, 0x0D, mdio_read(ioaddr, 0x0D) & ~(1 << 5)); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x1D, 0x3D98); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x17, 0x0CC0); mdio_write(ioaddr, 0x1F, 0x0000); } else if (tp->mcfg == CFG_METHOD_6) { mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x12, 0x2300); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x16, 0x0F0A); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x00, 0x88DE); mdio_write(ioaddr, 0x01, 0x82B1); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x0C, 0x7EB8); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x06, 0x0761); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x06, 0x5461); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x16, mdio_read(ioaddr, 0x16) | (1 << 0)); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x14, mdio_read(ioaddr, 0x14) | (1 << 5)); mdio_write(ioaddr, 0x0D, mdio_read(ioaddr, 0x0D) & ~(1 << 5)); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x1D, 0x3D98); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x17, 0x0CC0); mdio_write(ioaddr, 0x1F, 0x0000); } else if (tp->mcfg == CFG_METHOD_7) { mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x14, mdio_read(ioaddr, 0x14) | (1 << 5)); mdio_write(ioaddr, 0x0D, mdio_read(ioaddr, 0x0D) & ~(1 << 5)); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x1D, 0x3D98); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x14, 0xCAA3); mdio_write(ioaddr, 0x1C, 0x000A); mdio_write(ioaddr, 0x18, 0x65D0); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x17, 0xB580); mdio_write(ioaddr, 0x18, 0xFF54); mdio_write(ioaddr, 0x19, 0x3954); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x0D, 0x310C); mdio_write(ioaddr, 0x0E, 0x310C); mdio_write(ioaddr, 0x0F, 0x311C); mdio_write(ioaddr, 0x06, 0x0761); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x18, 0xFF55); mdio_write(ioaddr, 0x19, 0x3955); mdio_write(ioaddr, 0x18, 0xFF54); mdio_write(ioaddr, 0x19, 0x3954); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x17, 0x0CC0); mdio_write(ioaddr, 0x1F, 0x0000); } else if (tp->mcfg == CFG_METHOD_8) { mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x14, mdio_read(ioaddr, 0x14) | (1 << 5)); mdio_write(ioaddr, 0x0D, mdio_read(ioaddr, 0x0D) & ~(1 << 5)); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x14, 0xCAA3); mdio_write(ioaddr, 0x1C, 0x000A); mdio_write(ioaddr, 0x18, 0x65D0); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x17, 0xB580); mdio_write(ioaddr, 0x18, 0xFF54); mdio_write(ioaddr, 0x19, 0x3954); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x0D, 0x310C); mdio_write(ioaddr, 0x0E, 0x310C); mdio_write(ioaddr, 0x0F, 0x311C); mdio_write(ioaddr, 0x06, 0x0761); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x18, 0xFF55); mdio_write(ioaddr, 0x19, 0x3955); mdio_write(ioaddr, 0x18, 0xFF54); mdio_write(ioaddr, 0x19, 0x3954); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x17, 0x0CC0); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x16, mdio_read(ioaddr, 0x16) | (1 << 0)); mdio_write(ioaddr, 0x1F, 0x0000); } else if (tp->mcfg == CFG_METHOD_9) { mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x06, 0x4064); mdio_write(ioaddr, 0x07, 0x2863); mdio_write(ioaddr, 0x08, 0x059C); mdio_write(ioaddr, 0x09, 0x26B4); mdio_write(ioaddr, 0x0A, 0x6A19); mdio_write(ioaddr, 0x0B, 0xDCC8); mdio_write(ioaddr, 0x10, 0xF06D); mdio_write(ioaddr, 0x14, 0x7F68); mdio_write(ioaddr, 0x18, 0x7FD9); mdio_write(ioaddr, 0x1C, 0xF0FF); mdio_write(ioaddr, 0x1D, 0x3D9C); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x12, 0xF49F); mdio_write(ioaddr, 0x13, 0x070B); mdio_write(ioaddr, 0x1A, 0x05AD); mdio_write(ioaddr, 0x14, 0x94C0); mdio_write(ioaddr, 0x1F, 0x0002); gphy_val = mdio_read(ioaddr, 0x0B) & 0xFF00; gphy_val |= 0x10; mdio_write(ioaddr, 0x0B, gphy_val); gphy_val = mdio_read(ioaddr, 0x0C) & 0x00FF; gphy_val |= 0xA200; mdio_write(ioaddr, 0x0C, gphy_val); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x06, 0x5561); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x05, 0x8332); mdio_write(ioaddr, 0x06, 0x5561); if (rtl8168_efuse_read(dev, 0x01) == 0xb1) { mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x05, 0x669A); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x05, 0x8330); mdio_write(ioaddr, 0x06, 0x669A); mdio_write(ioaddr, 0x1F, 0x0002); gphy_val = mdio_read(ioaddr, 0x0D); if ((gphy_val & 0x00FF) != 0x006C) { gphy_val &= 0xFF00; mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x0D, gphy_val | 0x0065); mdio_write(ioaddr, 0x0D, gphy_val | 0x0066); mdio_write(ioaddr, 0x0D, gphy_val | 0x0067); mdio_write(ioaddr, 0x0D, gphy_val | 0x0068); mdio_write(ioaddr, 0x0D, gphy_val | 0x0069); mdio_write(ioaddr, 0x0D, gphy_val | 0x006A); mdio_write(ioaddr, 0x0D, gphy_val | 0x006B); mdio_write(ioaddr, 0x0D, gphy_val | 0x006C); } } else { mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x05, 0x6662); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x05, 0x8330); mdio_write(ioaddr, 0x06, 0x6662); } mdio_write(ioaddr, 0x1F, 0x0002); gphy_val = mdio_read(ioaddr, 0x0D); gphy_val |= BIT_9; gphy_val |= BIT_8; mdio_write(ioaddr, 0x0D, gphy_val); gphy_val = mdio_read(ioaddr, 0x0F); gphy_val |= BIT_4; mdio_write(ioaddr, 0x0F, gphy_val); mdio_write(ioaddr, 0x1F, 0x0002); gphy_val = mdio_read(ioaddr, 0x02); gphy_val &= ~BIT_10; gphy_val &= ~BIT_9; gphy_val |= BIT_8; mdio_write(ioaddr, 0x02, gphy_val); gphy_val = mdio_read(ioaddr, 0x03); gphy_val &= ~BIT_15; gphy_val &= ~BIT_14; gphy_val &= ~BIT_13; mdio_write(ioaddr, 0x03, gphy_val); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x17, 0x0CC0); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x05, 0xFFF6); mdio_write(ioaddr, 0x06, 0x0080); mdio_write(ioaddr, 0x05, 0x8000); mdio_write(ioaddr, 0x06, 0xF8F9); mdio_write(ioaddr, 0x06, 0xFAEF); mdio_write(ioaddr, 0x06, 0x59EE); mdio_write(ioaddr, 0x06, 0xF8EA); mdio_write(ioaddr, 0x06, 0x00EE); mdio_write(ioaddr, 0x06, 0xF8EB); mdio_write(ioaddr, 0x06, 0x00E0); mdio_write(ioaddr, 0x06, 0xF87C); mdio_write(ioaddr, 0x06, 0xE1F8); mdio_write(ioaddr, 0x06, 0x7D59); mdio_write(ioaddr, 0x06, 0x0FEF); mdio_write(ioaddr, 0x06, 0x0139); mdio_write(ioaddr, 0x06, 0x029E); mdio_write(ioaddr, 0x06, 0x06EF); mdio_write(ioaddr, 0x06, 0x1039); mdio_write(ioaddr, 0x06, 0x089F); mdio_write(ioaddr, 0x06, 0x2AEE); mdio_write(ioaddr, 0x06, 0xF8EA); mdio_write(ioaddr, 0x06, 0x00EE); mdio_write(ioaddr, 0x06, 0xF8EB); mdio_write(ioaddr, 0x06, 0x01E0); mdio_write(ioaddr, 0x06, 0xF87C); mdio_write(ioaddr, 0x06, 0xE1F8); mdio_write(ioaddr, 0x06, 0x7D58); mdio_write(ioaddr, 0x06, 0x409E); mdio_write(ioaddr, 0x06, 0x0F39); mdio_write(ioaddr, 0x06, 0x46AA); mdio_write(ioaddr, 0x06, 0x0BBF); mdio_write(ioaddr, 0x06, 0x8290); mdio_write(ioaddr, 0x06, 0xD682); mdio_write(ioaddr, 0x06, 0x9802); mdio_write(ioaddr, 0x06, 0x014F); mdio_write(ioaddr, 0x06, 0xAE09); mdio_write(ioaddr, 0x06, 0xBF82); mdio_write(ioaddr, 0x06, 0x98D6); mdio_write(ioaddr, 0x06, 0x82A0); mdio_write(ioaddr, 0x06, 0x0201); mdio_write(ioaddr, 0x06, 0x4FEF); mdio_write(ioaddr, 0x06, 0x95FE); mdio_write(ioaddr, 0x06, 0xFDFC); mdio_write(ioaddr, 0x06, 0x05F8); mdio_write(ioaddr, 0x06, 0xF9FA); mdio_write(ioaddr, 0x06, 0xEEF8); mdio_write(ioaddr, 0x06, 0xEA00); mdio_write(ioaddr, 0x06, 0xEEF8); mdio_write(ioaddr, 0x06, 0xEB00); mdio_write(ioaddr, 0x06, 0xE2F8); mdio_write(ioaddr, 0x06, 0x7CE3); mdio_write(ioaddr, 0x06, 0xF87D); mdio_write(ioaddr, 0x06, 0xA511); mdio_write(ioaddr, 0x06, 0x1112); mdio_write(ioaddr, 0x06, 0xD240); mdio_write(ioaddr, 0x06, 0xD644); mdio_write(ioaddr, 0x06, 0x4402); mdio_write(ioaddr, 0x06, 0x8217); mdio_write(ioaddr, 0x06, 0xD2A0); mdio_write(ioaddr, 0x06, 0xD6AA); mdio_write(ioaddr, 0x06, 0xAA02); mdio_write(ioaddr, 0x06, 0x8217); mdio_write(ioaddr, 0x06, 0xAE0F); mdio_write(ioaddr, 0x06, 0xA544); mdio_write(ioaddr, 0x06, 0x4402); mdio_write(ioaddr, 0x06, 0xAE4D); mdio_write(ioaddr, 0x06, 0xA5AA); mdio_write(ioaddr, 0x06, 0xAA02); mdio_write(ioaddr, 0x06, 0xAE47); mdio_write(ioaddr, 0x06, 0xAF82); mdio_write(ioaddr, 0x06, 0x13EE); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x00EE); mdio_write(ioaddr, 0x06, 0x834D); mdio_write(ioaddr, 0x06, 0x0FEE); mdio_write(ioaddr, 0x06, 0x834C); mdio_write(ioaddr, 0x06, 0x0FEE); mdio_write(ioaddr, 0x06, 0x834F); mdio_write(ioaddr, 0x06, 0x00EE); mdio_write(ioaddr, 0x06, 0x8351); mdio_write(ioaddr, 0x06, 0x00EE); mdio_write(ioaddr, 0x06, 0x834A); mdio_write(ioaddr, 0x06, 0xFFEE); mdio_write(ioaddr, 0x06, 0x834B); mdio_write(ioaddr, 0x06, 0xFFE0); mdio_write(ioaddr, 0x06, 0x8330); mdio_write(ioaddr, 0x06, 0xE183); mdio_write(ioaddr, 0x06, 0x3158); mdio_write(ioaddr, 0x06, 0xFEE4); mdio_write(ioaddr, 0x06, 0xF88A); mdio_write(ioaddr, 0x06, 0xE5F8); mdio_write(ioaddr, 0x06, 0x8BE0); mdio_write(ioaddr, 0x06, 0x8332); mdio_write(ioaddr, 0x06, 0xE183); mdio_write(ioaddr, 0x06, 0x3359); mdio_write(ioaddr, 0x06, 0x0FE2); mdio_write(ioaddr, 0x06, 0x834D); mdio_write(ioaddr, 0x06, 0x0C24); mdio_write(ioaddr, 0x06, 0x5AF0); mdio_write(ioaddr, 0x06, 0x1E12); mdio_write(ioaddr, 0x06, 0xE4F8); mdio_write(ioaddr, 0x06, 0x8CE5); mdio_write(ioaddr, 0x06, 0xF88D); mdio_write(ioaddr, 0x06, 0xAF82); mdio_write(ioaddr, 0x06, 0x13E0); mdio_write(ioaddr, 0x06, 0x834F); mdio_write(ioaddr, 0x06, 0x10E4); mdio_write(ioaddr, 0x06, 0x834F); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4E78); mdio_write(ioaddr, 0x06, 0x009F); mdio_write(ioaddr, 0x06, 0x0AE0); mdio_write(ioaddr, 0x06, 0x834F); mdio_write(ioaddr, 0x06, 0xA010); mdio_write(ioaddr, 0x06, 0xA5EE); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x01E0); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x7805); mdio_write(ioaddr, 0x06, 0x9E9A); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4E78); mdio_write(ioaddr, 0x06, 0x049E); mdio_write(ioaddr, 0x06, 0x10E0); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x7803); mdio_write(ioaddr, 0x06, 0x9E0F); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4E78); mdio_write(ioaddr, 0x06, 0x019E); mdio_write(ioaddr, 0x06, 0x05AE); mdio_write(ioaddr, 0x06, 0x0CAF); mdio_write(ioaddr, 0x06, 0x81F8); mdio_write(ioaddr, 0x06, 0xAF81); mdio_write(ioaddr, 0x06, 0xA3AF); mdio_write(ioaddr, 0x06, 0x81DC); mdio_write(ioaddr, 0x06, 0xAF82); mdio_write(ioaddr, 0x06, 0x13EE); mdio_write(ioaddr, 0x06, 0x8348); mdio_write(ioaddr, 0x06, 0x00EE); mdio_write(ioaddr, 0x06, 0x8349); mdio_write(ioaddr, 0x06, 0x00E0); mdio_write(ioaddr, 0x06, 0x8351); mdio_write(ioaddr, 0x06, 0x10E4); mdio_write(ioaddr, 0x06, 0x8351); mdio_write(ioaddr, 0x06, 0x5801); mdio_write(ioaddr, 0x06, 0x9FEA); mdio_write(ioaddr, 0x06, 0xD000); mdio_write(ioaddr, 0x06, 0xD180); mdio_write(ioaddr, 0x06, 0x1F66); mdio_write(ioaddr, 0x06, 0xE2F8); mdio_write(ioaddr, 0x06, 0xEAE3); mdio_write(ioaddr, 0x06, 0xF8EB); mdio_write(ioaddr, 0x06, 0x5AF8); mdio_write(ioaddr, 0x06, 0x1E20); mdio_write(ioaddr, 0x06, 0xE6F8); mdio_write(ioaddr, 0x06, 0xEAE5); mdio_write(ioaddr, 0x06, 0xF8EB); mdio_write(ioaddr, 0x06, 0xD302); mdio_write(ioaddr, 0x06, 0xB3FE); mdio_write(ioaddr, 0x06, 0xE2F8); mdio_write(ioaddr, 0x06, 0x7CEF); mdio_write(ioaddr, 0x06, 0x325B); mdio_write(ioaddr, 0x06, 0x80E3); mdio_write(ioaddr, 0x06, 0xF87D); mdio_write(ioaddr, 0x06, 0x9E03); mdio_write(ioaddr, 0x06, 0x7DFF); mdio_write(ioaddr, 0x06, 0xFF0D); mdio_write(ioaddr, 0x06, 0x581C); mdio_write(ioaddr, 0x06, 0x551A); mdio_write(ioaddr, 0x06, 0x6511); mdio_write(ioaddr, 0x06, 0xA190); mdio_write(ioaddr, 0x06, 0xD3E2); mdio_write(ioaddr, 0x06, 0x8348); mdio_write(ioaddr, 0x06, 0xE383); mdio_write(ioaddr, 0x06, 0x491B); mdio_write(ioaddr, 0x06, 0x56AB); mdio_write(ioaddr, 0x06, 0x08EF); mdio_write(ioaddr, 0x06, 0x56E6); mdio_write(ioaddr, 0x06, 0x8348); mdio_write(ioaddr, 0x06, 0xE783); mdio_write(ioaddr, 0x06, 0x4910); mdio_write(ioaddr, 0x06, 0xD180); mdio_write(ioaddr, 0x06, 0x1F66); mdio_write(ioaddr, 0x06, 0xA004); mdio_write(ioaddr, 0x06, 0xB9E2); mdio_write(ioaddr, 0x06, 0x8348); mdio_write(ioaddr, 0x06, 0xE383); mdio_write(ioaddr, 0x06, 0x49EF); mdio_write(ioaddr, 0x06, 0x65E2); mdio_write(ioaddr, 0x06, 0x834A); mdio_write(ioaddr, 0x06, 0xE383); mdio_write(ioaddr, 0x06, 0x4B1B); mdio_write(ioaddr, 0x06, 0x56AA); mdio_write(ioaddr, 0x06, 0x0EEF); mdio_write(ioaddr, 0x06, 0x56E6); mdio_write(ioaddr, 0x06, 0x834A); mdio_write(ioaddr, 0x06, 0xE783); mdio_write(ioaddr, 0x06, 0x4BE2); mdio_write(ioaddr, 0x06, 0x834D); mdio_write(ioaddr, 0x06, 0xE683); mdio_write(ioaddr, 0x06, 0x4CE0); mdio_write(ioaddr, 0x06, 0x834D); mdio_write(ioaddr, 0x06, 0xA000); mdio_write(ioaddr, 0x06, 0x0CAF); mdio_write(ioaddr, 0x06, 0x81DC); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4D10); mdio_write(ioaddr, 0x06, 0xE483); mdio_write(ioaddr, 0x06, 0x4DAE); mdio_write(ioaddr, 0x06, 0x0480); mdio_write(ioaddr, 0x06, 0xE483); mdio_write(ioaddr, 0x06, 0x4DE0); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x7803); mdio_write(ioaddr, 0x06, 0x9E0B); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4E78); mdio_write(ioaddr, 0x06, 0x049E); mdio_write(ioaddr, 0x06, 0x04EE); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x02E0); mdio_write(ioaddr, 0x06, 0x8332); mdio_write(ioaddr, 0x06, 0xE183); mdio_write(ioaddr, 0x06, 0x3359); mdio_write(ioaddr, 0x06, 0x0FE2); mdio_write(ioaddr, 0x06, 0x834D); mdio_write(ioaddr, 0x06, 0x0C24); mdio_write(ioaddr, 0x06, 0x5AF0); mdio_write(ioaddr, 0x06, 0x1E12); mdio_write(ioaddr, 0x06, 0xE4F8); mdio_write(ioaddr, 0x06, 0x8CE5); mdio_write(ioaddr, 0x06, 0xF88D); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x30E1); mdio_write(ioaddr, 0x06, 0x8331); mdio_write(ioaddr, 0x06, 0x6801); mdio_write(ioaddr, 0x06, 0xE4F8); mdio_write(ioaddr, 0x06, 0x8AE5); mdio_write(ioaddr, 0x06, 0xF88B); mdio_write(ioaddr, 0x06, 0xAE37); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4E03); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4CE1); mdio_write(ioaddr, 0x06, 0x834D); mdio_write(ioaddr, 0x06, 0x1B01); mdio_write(ioaddr, 0x06, 0x9E04); mdio_write(ioaddr, 0x06, 0xAAA1); mdio_write(ioaddr, 0x06, 0xAEA8); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4E04); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4F00); mdio_write(ioaddr, 0x06, 0xAEAB); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4F78); mdio_write(ioaddr, 0x06, 0x039F); mdio_write(ioaddr, 0x06, 0x14EE); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x05D2); mdio_write(ioaddr, 0x06, 0x40D6); mdio_write(ioaddr, 0x06, 0x5554); mdio_write(ioaddr, 0x06, 0x0282); mdio_write(ioaddr, 0x06, 0x17D2); mdio_write(ioaddr, 0x06, 0xA0D6); mdio_write(ioaddr, 0x06, 0xBA00); mdio_write(ioaddr, 0x06, 0x0282); mdio_write(ioaddr, 0x06, 0x17FE); mdio_write(ioaddr, 0x06, 0xFDFC); mdio_write(ioaddr, 0x06, 0x05F8); mdio_write(ioaddr, 0x06, 0xE0F8); mdio_write(ioaddr, 0x06, 0x60E1); mdio_write(ioaddr, 0x06, 0xF861); mdio_write(ioaddr, 0x06, 0x6802); mdio_write(ioaddr, 0x06, 0xE4F8); mdio_write(ioaddr, 0x06, 0x60E5); mdio_write(ioaddr, 0x06, 0xF861); mdio_write(ioaddr, 0x06, 0xE0F8); mdio_write(ioaddr, 0x06, 0x48E1); mdio_write(ioaddr, 0x06, 0xF849); mdio_write(ioaddr, 0x06, 0x580F); mdio_write(ioaddr, 0x06, 0x1E02); mdio_write(ioaddr, 0x06, 0xE4F8); mdio_write(ioaddr, 0x06, 0x48E5); mdio_write(ioaddr, 0x06, 0xF849); mdio_write(ioaddr, 0x06, 0xD000); mdio_write(ioaddr, 0x06, 0x0282); mdio_write(ioaddr, 0x06, 0x5BBF); mdio_write(ioaddr, 0x06, 0x8350); mdio_write(ioaddr, 0x06, 0xEF46); mdio_write(ioaddr, 0x06, 0xDC19); mdio_write(ioaddr, 0x06, 0xDDD0); mdio_write(ioaddr, 0x06, 0x0102); mdio_write(ioaddr, 0x06, 0x825B); mdio_write(ioaddr, 0x06, 0x0282); mdio_write(ioaddr, 0x06, 0x77E0); mdio_write(ioaddr, 0x06, 0xF860); mdio_write(ioaddr, 0x06, 0xE1F8); mdio_write(ioaddr, 0x06, 0x6158); mdio_write(ioaddr, 0x06, 0xFDE4); mdio_write(ioaddr, 0x06, 0xF860); mdio_write(ioaddr, 0x06, 0xE5F8); mdio_write(ioaddr, 0x06, 0x61FC); mdio_write(ioaddr, 0x06, 0x04F9); mdio_write(ioaddr, 0x06, 0xFAFB); mdio_write(ioaddr, 0x06, 0xC6BF); mdio_write(ioaddr, 0x06, 0xF840); mdio_write(ioaddr, 0x06, 0xBE83); mdio_write(ioaddr, 0x06, 0x50A0); mdio_write(ioaddr, 0x06, 0x0101); mdio_write(ioaddr, 0x06, 0x071B); mdio_write(ioaddr, 0x06, 0x89CF); mdio_write(ioaddr, 0x06, 0xD208); mdio_write(ioaddr, 0x06, 0xEBDB); mdio_write(ioaddr, 0x06, 0x19B2); mdio_write(ioaddr, 0x06, 0xFBFF); mdio_write(ioaddr, 0x06, 0xFEFD); mdio_write(ioaddr, 0x06, 0x04F8); mdio_write(ioaddr, 0x06, 0xE0F8); mdio_write(ioaddr, 0x06, 0x48E1); mdio_write(ioaddr, 0x06, 0xF849); mdio_write(ioaddr, 0x06, 0x6808); mdio_write(ioaddr, 0x06, 0xE4F8); mdio_write(ioaddr, 0x06, 0x48E5); mdio_write(ioaddr, 0x06, 0xF849); mdio_write(ioaddr, 0x06, 0x58F7); mdio_write(ioaddr, 0x06, 0xE4F8); mdio_write(ioaddr, 0x06, 0x48E5); mdio_write(ioaddr, 0x06, 0xF849); mdio_write(ioaddr, 0x06, 0xFC04); mdio_write(ioaddr, 0x06, 0x4D20); mdio_write(ioaddr, 0x06, 0x0002); mdio_write(ioaddr, 0x06, 0x4E22); mdio_write(ioaddr, 0x06, 0x0002); mdio_write(ioaddr, 0x06, 0x4DDF); mdio_write(ioaddr, 0x06, 0xFF01); mdio_write(ioaddr, 0x06, 0x4EDD); mdio_write(ioaddr, 0x06, 0xFF01); mdio_write(ioaddr, 0x06, 0xF8FA); mdio_write(ioaddr, 0x06, 0xFBEF); mdio_write(ioaddr, 0x06, 0x79BF); mdio_write(ioaddr, 0x06, 0xF822); mdio_write(ioaddr, 0x06, 0xD819); mdio_write(ioaddr, 0x06, 0xD958); mdio_write(ioaddr, 0x06, 0x849F); mdio_write(ioaddr, 0x06, 0x09BF); mdio_write(ioaddr, 0x06, 0x82BE); mdio_write(ioaddr, 0x06, 0xD682); mdio_write(ioaddr, 0x06, 0xC602); mdio_write(ioaddr, 0x06, 0x014F); mdio_write(ioaddr, 0x06, 0xEF97); mdio_write(ioaddr, 0x06, 0xFFFE); mdio_write(ioaddr, 0x06, 0xFC05); mdio_write(ioaddr, 0x06, 0x17FF); mdio_write(ioaddr, 0x06, 0xFE01); mdio_write(ioaddr, 0x06, 0x1700); mdio_write(ioaddr, 0x06, 0x0102); mdio_write(ioaddr, 0x05, 0x83D8); mdio_write(ioaddr, 0x06, 0x8051); mdio_write(ioaddr, 0x05, 0x83D6); mdio_write(ioaddr, 0x06, 0x82A0); mdio_write(ioaddr, 0x05, 0x83D4); mdio_write(ioaddr, 0x06, 0x8000); mdio_write(ioaddr, 0x02, 0x2010); mdio_write(ioaddr, 0x03, 0xDC00); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x0B, 0x0600); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x05, 0xFFF6); mdio_write(ioaddr, 0x06, 0x00FC); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x0D, 0xF880); mdio_write(ioaddr, 0x1F, 0x0000); } else if (tp->mcfg == CFG_METHOD_10) { mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x06, 0x4064); mdio_write(ioaddr, 0x07, 0x2863); mdio_write(ioaddr, 0x08, 0x059C); mdio_write(ioaddr, 0x09, 0x26B4); mdio_write(ioaddr, 0x0A, 0x6A19); mdio_write(ioaddr, 0x0B, 0xDCC8); mdio_write(ioaddr, 0x10, 0xF06D); mdio_write(ioaddr, 0x14, 0x7F68); mdio_write(ioaddr, 0x18, 0x7FD9); mdio_write(ioaddr, 0x1C, 0xF0FF); mdio_write(ioaddr, 0x1D, 0x3D9C); mdio_write(ioaddr, 0x1F, 0x0003); mdio_write(ioaddr, 0x12, 0xF49F); mdio_write(ioaddr, 0x13, 0x070B); mdio_write(ioaddr, 0x1A, 0x05AD); mdio_write(ioaddr, 0x14, 0x94C0); mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x06, 0x5561); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x05, 0x8332); mdio_write(ioaddr, 0x06, 0x5561); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x11, mdio_read(ioaddr, 0x11) & ~BIT_1); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x01, mdio_read(ioaddr, 0x01) | BIT_9); if (rtl8168_efuse_read(dev, 0x01) == 0xb1) { mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x05, 0x669A); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x05, 0x8330); mdio_write(ioaddr, 0x06, 0x669A); mdio_write(ioaddr, 0x1F, 0x0002); gphy_val = mdio_read(ioaddr, 0x0D); if ((gphy_val & 0x00FF) != 0x006C) { gphy_val &= 0xFF00; mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x0D, gphy_val | 0x0065); mdio_write(ioaddr, 0x0D, gphy_val | 0x0066); mdio_write(ioaddr, 0x0D, gphy_val | 0x0067); mdio_write(ioaddr, 0x0D, gphy_val | 0x0068); mdio_write(ioaddr, 0x0D, gphy_val | 0x0069); mdio_write(ioaddr, 0x0D, gphy_val | 0x006A); mdio_write(ioaddr, 0x0D, gphy_val | 0x006B); mdio_write(ioaddr, 0x0D, gphy_val | 0x006C); } } else { mdio_write(ioaddr, 0x1F, 0x0002); mdio_write(ioaddr, 0x05, 0x2642); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x05, 0x8330); mdio_write(ioaddr, 0x06, 0x2642); } mdio_write(ioaddr, 0x1F, 0x0002); gphy_val = mdio_read(ioaddr, 0x02); gphy_val &= ~BIT_10; gphy_val &= ~BIT_9; gphy_val |= BIT_8; mdio_write(ioaddr, 0x02, gphy_val); gphy_val = mdio_read(ioaddr, 0x03); gphy_val &= ~BIT_15; gphy_val &= ~BIT_14; gphy_val &= ~BIT_13; mdio_write(ioaddr, 0x03, gphy_val); mdio_write(ioaddr, 0x1F, 0x0001); mdio_write(ioaddr, 0x17, 0x0CC0); mdio_write(ioaddr, 0x1F, 0x0002); gphy_val = mdio_read(ioaddr, 0x0F); gphy_val |= BIT_4; gphy_val |= BIT_2; gphy_val |= BIT_1; gphy_val |= BIT_0; mdio_write(ioaddr, 0x0F, gphy_val); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x05, 0xFFC2); mdio_write(ioaddr, 0x1F, 0x0005); mdio_write(ioaddr, 0x05, 0x8000); mdio_write(ioaddr, 0x06, 0xF8F9); mdio_write(ioaddr, 0x06, 0xFAEE); mdio_write(ioaddr, 0x06, 0xF8EA); mdio_write(ioaddr, 0x06, 0x00EE); mdio_write(ioaddr, 0x06, 0xF8EB); mdio_write(ioaddr, 0x06, 0x00E2); mdio_write(ioaddr, 0x06, 0xF87C); mdio_write(ioaddr, 0x06, 0xE3F8); mdio_write(ioaddr, 0x06, 0x7DA5); mdio_write(ioaddr, 0x06, 0x1111); mdio_write(ioaddr, 0x06, 0x12D2); mdio_write(ioaddr, 0x06, 0x40D6); mdio_write(ioaddr, 0x06, 0x4444); mdio_write(ioaddr, 0x06, 0x0281); mdio_write(ioaddr, 0x06, 0xC6D2); mdio_write(ioaddr, 0x06, 0xA0D6); mdio_write(ioaddr, 0x06, 0xAAAA); mdio_write(ioaddr, 0x06, 0x0281); mdio_write(ioaddr, 0x06, 0xC6AE); mdio_write(ioaddr, 0x06, 0x0FA5); mdio_write(ioaddr, 0x06, 0x4444); mdio_write(ioaddr, 0x06, 0x02AE); mdio_write(ioaddr, 0x06, 0x4DA5); mdio_write(ioaddr, 0x06, 0xAAAA); mdio_write(ioaddr, 0x06, 0x02AE); mdio_write(ioaddr, 0x06, 0x47AF); mdio_write(ioaddr, 0x06, 0x81C2); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4E00); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4D0F); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4C0F); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4F00); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x5100); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4AFF); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4BFF); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x30E1); mdio_write(ioaddr, 0x06, 0x8331); mdio_write(ioaddr, 0x06, 0x58FE); mdio_write(ioaddr, 0x06, 0xE4F8); mdio_write(ioaddr, 0x06, 0x8AE5); mdio_write(ioaddr, 0x06, 0xF88B); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x32E1); mdio_write(ioaddr, 0x06, 0x8333); mdio_write(ioaddr, 0x06, 0x590F); mdio_write(ioaddr, 0x06, 0xE283); mdio_write(ioaddr, 0x06, 0x4D0C); mdio_write(ioaddr, 0x06, 0x245A); mdio_write(ioaddr, 0x06, 0xF01E); mdio_write(ioaddr, 0x06, 0x12E4); mdio_write(ioaddr, 0x06, 0xF88C); mdio_write(ioaddr, 0x06, 0xE5F8); mdio_write(ioaddr, 0x06, 0x8DAF); mdio_write(ioaddr, 0x06, 0x81C2); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4F10); mdio_write(ioaddr, 0x06, 0xE483); mdio_write(ioaddr, 0x06, 0x4FE0); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x7800); mdio_write(ioaddr, 0x06, 0x9F0A); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4FA0); mdio_write(ioaddr, 0x06, 0x10A5); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4E01); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4E78); mdio_write(ioaddr, 0x06, 0x059E); mdio_write(ioaddr, 0x06, 0x9AE0); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x7804); mdio_write(ioaddr, 0x06, 0x9E10); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4E78); mdio_write(ioaddr, 0x06, 0x039E); mdio_write(ioaddr, 0x06, 0x0FE0); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x7801); mdio_write(ioaddr, 0x06, 0x9E05); mdio_write(ioaddr, 0x06, 0xAE0C); mdio_write(ioaddr, 0x06, 0xAF81); mdio_write(ioaddr, 0x06, 0xA7AF); mdio_write(ioaddr, 0x06, 0x8152); mdio_write(ioaddr, 0x06, 0xAF81); mdio_write(ioaddr, 0x06, 0x8BAF); mdio_write(ioaddr, 0x06, 0x81C2); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4800); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4900); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x5110); mdio_write(ioaddr, 0x06, 0xE483); mdio_write(ioaddr, 0x06, 0x5158); mdio_write(ioaddr, 0x06, 0x019F); mdio_write(ioaddr, 0x06, 0xEAD0); mdio_write(ioaddr, 0x06, 0x00D1); mdio_write(ioaddr, 0x06, 0x801F); mdio_write(ioaddr, 0x06, 0x66E2); mdio_write(ioaddr, 0x06, 0xF8EA); mdio_write(ioaddr, 0x06, 0xE3F8); mdio_write(ioaddr, 0x06, 0xEB5A); mdio_write(ioaddr, 0x06, 0xF81E); mdio_write(ioaddr, 0x06, 0x20E6); mdio_write(ioaddr, 0x06, 0xF8EA); mdio_write(ioaddr, 0x06, 0xE5F8); mdio_write(ioaddr, 0x06, 0xEBD3); mdio_write(ioaddr, 0x06, 0x02B3); mdio_write(ioaddr, 0x06, 0xFEE2); mdio_write(ioaddr, 0x06, 0xF87C); mdio_write(ioaddr, 0x06, 0xEF32); mdio_write(ioaddr, 0x06, 0x5B80); mdio_write(ioaddr, 0x06, 0xE3F8); mdio_write(ioaddr, 0x06, 0x7D9E); mdio_write(ioaddr, 0x06, 0x037D); mdio_write(ioaddr, 0x06, 0xFFFF); mdio_write(ioaddr, 0x06, 0x0D58); mdio_write(ioaddr, 0x06, 0x1C55); mdio_write(ioaddr, 0x06, 0x1A65); mdio_write(ioaddr, 0x06, 0x11A1); mdio_write(ioaddr, 0x06, 0x90D3); mdio_write(ioaddr, 0x06, 0xE283); mdio_write(ioaddr, 0x06, 0x48E3); mdio_write(ioaddr, 0x06, 0x8349); mdio_write(ioaddr, 0x06, 0x1B56); mdio_write(ioaddr, 0x06, 0xAB08); mdio_write(ioaddr, 0x06, 0xEF56); mdio_write(ioaddr, 0x06, 0xE683); mdio_write(ioaddr, 0x06, 0x48E7); mdio_write(ioaddr, 0x06, 0x8349); mdio_write(ioaddr, 0x06, 0x10D1); mdio_write(ioaddr, 0x06, 0x801F); mdio_write(ioaddr, 0x06, 0x66A0); mdio_write(ioaddr, 0x06, 0x04B9); mdio_write(ioaddr, 0x06, 0xE283); mdio_write(ioaddr, 0x06, 0x48E3); mdio_write(ioaddr, 0x06, 0x8349); mdio_write(ioaddr, 0x06, 0xEF65); mdio_write(ioaddr, 0x06, 0xE283); mdio_write(ioaddr, 0x06, 0x4AE3); mdio_write(ioaddr, 0x06, 0x834B); mdio_write(ioaddr, 0x06, 0x1B56); mdio_write(ioaddr, 0x06, 0xAA0E); mdio_write(ioaddr, 0x06, 0xEF56); mdio_write(ioaddr, 0x06, 0xE683); mdio_write(ioaddr, 0x06, 0x4AE7); mdio_write(ioaddr, 0x06, 0x834B); mdio_write(ioaddr, 0x06, 0xE283); mdio_write(ioaddr, 0x06, 0x4DE6); mdio_write(ioaddr, 0x06, 0x834C); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4DA0); mdio_write(ioaddr, 0x06, 0x000C); mdio_write(ioaddr, 0x06, 0xAF81); mdio_write(ioaddr, 0x06, 0x8BE0); mdio_write(ioaddr, 0x06, 0x834D); mdio_write(ioaddr, 0x06, 0x10E4); mdio_write(ioaddr, 0x06, 0x834D); mdio_write(ioaddr, 0x06, 0xAE04); mdio_write(ioaddr, 0x06, 0x80E4); mdio_write(ioaddr, 0x06, 0x834D); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x4E78); mdio_write(ioaddr, 0x06, 0x039E); mdio_write(ioaddr, 0x06, 0x0BE0); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x7804); mdio_write(ioaddr, 0x06, 0x9E04); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4E02); mdio_write(ioaddr, 0x06, 0xE083); mdio_write(ioaddr, 0x06, 0x32E1); mdio_write(ioaddr, 0x06, 0x8333); mdio_write(ioaddr, 0x06, 0x590F); mdio_write(ioaddr, 0x06, 0xE283); mdio_write(ioaddr, 0x06, 0x4D0C); mdio_write(ioaddr, 0x06, 0x245A); mdio_write(ioaddr, 0x06, 0xF01E); mdio_write(ioaddr, 0x06, 0x12E4); mdio_write(ioaddr, 0x06, 0xF88C); mdio_write(ioaddr, 0x06, 0xE5F8); mdio_write(ioaddr, 0x06, 0x8DE0); mdio_write(ioaddr, 0x06, 0x8330); mdio_write(ioaddr, 0x06, 0xE183); mdio_write(ioaddr, 0x06, 0x3168); mdio_write(ioaddr, 0x06, 0x01E4); mdio_write(ioaddr, 0x06, 0xF88A); mdio_write(ioaddr, 0x06, 0xE5F8); mdio_write(ioaddr, 0x06, 0x8BAE); mdio_write(ioaddr, 0x06, 0x37EE); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x03E0); mdio_write(ioaddr, 0x06, 0x834C); mdio_write(ioaddr, 0x06, 0xE183); mdio_write(ioaddr, 0x06, 0x4D1B); mdio_write(ioaddr, 0x06, 0x019E); mdio_write(ioaddr, 0x06, 0x04AA); mdio_write(ioaddr, 0x06, 0xA1AE); mdio_write(ioaddr, 0x06, 0xA8EE); mdio_write(ioaddr, 0x06, 0x834E); mdio_write(ioaddr, 0x06, 0x04EE); mdio_write(ioaddr, 0x06, 0x834F); mdio_write(ioaddr, 0x06, 0x00AE); mdio_write(ioaddr, 0x06, 0xABE0); mdio_write(ioaddr, 0x06, 0x834F); mdio_write(ioaddr, 0x06, 0x7803); mdio_write(ioaddr, 0x06, 0x9F14); mdio_write(ioaddr, 0x06, 0xEE83); mdio_write(ioaddr, 0x06, 0x4E05); mdio_write(ioaddr, 0x06, 0xD240); mdio_write(ioaddr, 0x06, 0xD655); mdio_write(ioaddr, 0x06, 0x5402); mdio_write(ioaddr, 0x06, 0x81C6); mdio_write(ioaddr, 0x06, 0xD2A0); mdio_write(ioaddr, 0x06, 0xD6BA); mdio_write(ioaddr, 0x06, 0x0002); mdio_write(ioaddr, 0x06, 0x81C6); mdio_write(ioaddr, 0x06, 0xFEFD); mdio_write(ioaddr, 0x06, 0xFC05); mdio_write(ioaddr, 0x06, 0xF8E0); mdio_write(ioaddr, 0x06, 0xF860); mdio_write(ioaddr, 0x06, 0xE1F8); mdio_write(ioaddr, 0x06, 0x6168); mdio_write(ioaddr, 0x06, 0x02E4); mdio_write(ioaddr, 0x06, 0xF860); mdio_write(ioaddr, 0x06, 0xE5F8); mdio_write(ioaddr, 0x06, 0x61E0); mdio_write(ioaddr, 0x06, 0xF848); mdio_write(ioaddr, 0x06, 0xE1F8); mdio_write(ioaddr, 0x06, 0x4958); mdio_write(ioaddr, 0x06, 0x0F1E); mdio_write(ioaddr, 0x06, 0x02E4); mdio_write(ioaddr, 0x06, 0xF848); mdio_write(ioaddr, 0x06, 0xE5F8); mdio_write(ioaddr, 0x06, 0x49D0); mdio_write(ioaddr, 0x06, 0x0002); mdio_write(ioaddr, 0x06, 0x820A); mdio_write(ioaddr, 0x06, 0xBF83); mdio_write(ioaddr, 0x06, 0x50EF); mdio_write(ioaddr, 0x06, 0x46DC); mdio_write(ioaddr, 0x06, 0x19DD); mdio_write(ioaddr, 0x06, 0xD001); mdio_write(ioaddr, 0x06, 0x0282); mdio_write(ioaddr, 0x06, 0x0A02); mdio_write(ioaddr, 0x06, 0x8226); mdio_write(ioaddr, 0x06, 0xE0F8); mdio_write(ioaddr, 0x06, 0x60E1); mdio_write(ioaddr, 0x06, 0xF861); mdio_write(ioaddr, 0x06, 0x58FD); mdio_write(ioaddr, 0x06, 0xE4F8); mdio_write(ioaddr, 0x06, 0x60E5); mdio_write(ioaddr, 0x06, 0xF861); mdio_write(ioaddr, 0x06, 0xFC04); mdio_write(ioaddr, 0x06, 0xF9FA); mdio_write(ioaddr, 0x06, 0xFBC6); mdio_write(ioaddr, 0x06, 0xBFF8); mdio_write(ioaddr, 0x06, 0x40BE); mdio_write(ioaddr, 0x06, 0x8350); mdio_write(ioaddr, 0x06, 0xA001); mdio_write(ioaddr, 0x06, 0x0107); mdio_write(ioaddr, 0x06, 0x1B89); mdio_write(ioaddr, 0x06, 0xCFD2); mdio_write(ioaddr, 0x06, 0x08EB); mdio_write(ioaddr, 0x06, 0xDB19); mdio_write(ioaddr, 0x06, 0xB2FB); mdio_write(ioaddr, 0x06, 0xFFFE); mdio_write(ioaddr, 0x06, 0xFD04); mdio_write(ioaddr, 0x06, 0xF8E0); mdio_write(ioaddr, 0x06, 0xF848); mdio_write(ioaddr, 0x06, 0xE1F8); mdio_write(ioaddr, 0x06, 0x4968); mdio_write(ioaddr, 0x06, 0x08E4); mdio_write(ioaddr, 0x06, 0xF848); mdio_write(ioaddr, 0x06, 0xE5F8); mdio_write(ioaddr, 0x06, 0x4958); mdio_write(ioaddr, 0x06, 0xF7E4); mdio_write(ioaddr, 0x06, 0xF848); mdio_write(ioaddr, 0x06, 0xE5F8); mdio_write(ioaddr, 0x06, 0x49FC); mdio_write(ioaddr, 0x06, 0x044D); mdio_write(ioaddr, 0x06, 0x2000); mdio_write(ioaddr, 0x06, 0x024E); mdio_write(ioaddr, 0x06, 0x2200); mdio_write(ioaddr, 0x06, 0x024D); mdio_write(ioaddr, 0x06, 0xDFFF); mdio_write(ioaddr, 0x06, 0x014E); mdio_write(ioaddr, 0x06, 0xDDFF); mdio_write(ioaddr, 0x06, 0x0100); mdio_write(ioaddr, 0x05, 0x83D8); mdio_write(ioaddr, 0x06, 0x8000); mdio_write(ioaddr, 0x03, 0xDC00); mdio_write(ioaddr, 0x05, 0xFFF6); mdio_write(ioaddr, 0x06, 0x00FC); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x0D, 0xF880); mdio_write(ioaddr, 0x1F, 0x0000); } else if (tp->mcfg == CFG_METHOD_11) { rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0002); rtl8168_ocp_gphy_write(ioaddr, 0x10, 0x0008); rtl8168_ocp_gphy_write(ioaddr, 0x0D, 0x006C); rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0000); rtl8168_ocp_gphy_write(ioaddr, 0x0D, 0xF880); rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0001); rtl8168_ocp_gphy_write(ioaddr, 0x17, 0x0CC0); rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0001); rtl8168_ocp_gphy_write(ioaddr, 0x0B, 0xA4D8); rtl8168_ocp_gphy_write(ioaddr, 0x09, 0x281C); rtl8168_ocp_gphy_write(ioaddr, 0x07, 0x2883); rtl8168_ocp_gphy_write(ioaddr, 0x0A, 0x6B35); rtl8168_ocp_gphy_write(ioaddr, 0x1D, 0x3DA4); rtl8168_ocp_gphy_write(ioaddr, 0x1C, 0xEFFD); rtl8168_ocp_gphy_write(ioaddr, 0x14, 0x7F52); rtl8168_ocp_gphy_write(ioaddr, 0x18, 0x7FC6); rtl8168_ocp_gphy_write(ioaddr, 0x08, 0x0601); rtl8168_ocp_gphy_write(ioaddr, 0x06, 0x4063); rtl8168_ocp_gphy_write(ioaddr, 0x10, 0xF074); rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0003); rtl8168_ocp_gphy_write(ioaddr, 0x13, 0x0789); rtl8168_ocp_gphy_write(ioaddr, 0x12, 0xF4BD); rtl8168_ocp_gphy_write(ioaddr, 0x1A, 0x04FD); rtl8168_ocp_gphy_write(ioaddr, 0x14, 0x84B0); rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0000); rtl8168_ocp_gphy_write(ioaddr, 0x00, 0x9200); rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0005); rtl8168_ocp_gphy_write(ioaddr, 0x01, 0x0340); rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0001); rtl8168_ocp_gphy_write(ioaddr, 0x04, 0x4000); rtl8168_ocp_gphy_write(ioaddr, 0x03, 0x1D21); rtl8168_ocp_gphy_write(ioaddr, 0x02, 0x0C32); rtl8168_ocp_gphy_write(ioaddr, 0x01, 0x0200); rtl8168_ocp_gphy_write(ioaddr, 0x00, 0x5554); rtl8168_ocp_gphy_write(ioaddr, 0x04, 0x4800); rtl8168_ocp_gphy_write(ioaddr, 0x04, 0x4000); rtl8168_ocp_gphy_write(ioaddr, 0x04, 0xF000); rtl8168_ocp_gphy_write(ioaddr, 0x03, 0xDF01); rtl8168_ocp_gphy_write(ioaddr, 0x02, 0xDF20); rtl8168_ocp_gphy_write(ioaddr, 0x01, 0x101A); rtl8168_ocp_gphy_write(ioaddr, 0x00, 0xA0FF); rtl8168_ocp_gphy_write(ioaddr, 0x04, 0xF800); rtl8168_ocp_gphy_write(ioaddr, 0x04, 0xF000); rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0000); rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0007); rtl8168_ocp_gphy_write(ioaddr, 0x1E, 0x0023); rtl8168_ocp_gphy_write(ioaddr, 0x16, 0x0000); rtl8168_ocp_gphy_write(ioaddr, 0x1F, 0x0000); } spin_unlock_irqrestore(&tp->phy_lock, flags); } static inline void rtl8168_delete_esd_timer(struct net_device *dev, struct timer_list *timer) { struct rtl8168_private *tp = netdev_priv(dev); spin_lock_irq(&tp->lock); del_timer_sync(timer); spin_unlock_irq(&tp->lock); } static inline void rtl8168_request_esd_timer(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->esd_timer; init_timer(timer); timer->expires = jiffies + RTL8168_ESD_TIMEOUT; timer->data = (unsigned long)(dev); timer->function = rtl8168_esd_timer; add_timer(timer); } static inline void rtl8168_delete_link_timer(struct net_device *dev, struct timer_list *timer) { struct rtl8168_private *tp = netdev_priv(dev); spin_lock_irq(&tp->lock); del_timer_sync(timer); spin_unlock_irq(&tp->lock); } static inline void rtl8168_request_link_timer(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->link_timer; init_timer(timer); timer->expires = jiffies + RTL8168_LINK_TIMEOUT; timer->data = (unsigned long)(dev); timer->function = rtl8168_link_timer; add_timer(timer); } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void rtl8168_netpoll(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; disable_irq(pdev->irq); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) rtl8168_interrupt(pdev->irq, dev, NULL); #else rtl8168_interrupt(pdev->irq, dev); #endif enable_irq(pdev->irq); } #endif static void rtl8168_release_board(struct pci_dev *pdev, struct net_device *dev, void __iomem *ioaddr) { iounmap(ioaddr); pci_release_regions(pdev); pci_disable_device(pdev); free_netdev(dev); } /** * rtl8168_set_mac_address - Change the Ethernet Address of the NIC * @dev: network interface device structure * @p: pointer to an address structure * * Return 0 on success, negative on failure **/ static int rtl8168_set_mac_address(struct net_device *dev, void *p) { struct rtl8168_private *tp = netdev_priv(dev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); memcpy(tp->mac_addr, addr->sa_data, dev->addr_len); rtl8168_rar_set(tp, tp->mac_addr, 0); return 0; } /****************************************************************************** * rtl8168_rar_set - Puts an ethernet address into a receive address register. * * tp - The private data structure for driver * addr - Address to put into receive address register * index - Receive address register to write *****************************************************************************/ void rtl8168_rar_set(struct rtl8168_private *tp, uint8_t *addr, uint32_t index) { void __iomem *ioaddr = tp->mmio_addr; uint32_t rar_low = 0; uint32_t rar_high = 0; rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) | ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W32(MAC0, rar_low); RTL_W32(MAC4, rar_high); RTL_W8(Cfg9346, Cfg9346_Lock); } #ifdef ETHTOOL_OPS_COMPAT static int ethtool_get_settings(struct net_device *dev, void *useraddr) { struct ethtool_cmd cmd = { ETHTOOL_GSET }; int err; if (!ethtool_ops->get_settings) return -EOPNOTSUPP; err = ethtool_ops->get_settings(dev, &cmd); if (err < 0) return err; if (copy_to_user(useraddr, &cmd, sizeof(cmd))) return -EFAULT; return 0; } static int ethtool_set_settings(struct net_device *dev, void *useraddr) { struct ethtool_cmd cmd; if (!ethtool_ops->set_settings) return -EOPNOTSUPP; if (copy_from_user(&cmd, useraddr, sizeof(cmd))) return -EFAULT; return ethtool_ops->set_settings(dev, &cmd); } static int ethtool_get_drvinfo(struct net_device *dev, void *useraddr) { struct ethtool_drvinfo info; struct ethtool_ops *ops = ethtool_ops; if (!ops->get_drvinfo) return -EOPNOTSUPP; memset(&info, 0, sizeof(info)); info.cmd = ETHTOOL_GDRVINFO; ops->get_drvinfo(dev, &info); if (ops->self_test_count) info.testinfo_len = ops->self_test_count(dev); if (ops->get_stats_count) info.n_stats = ops->get_stats_count(dev); if (ops->get_regs_len) info.regdump_len = ops->get_regs_len(dev); if (ops->get_eeprom_len) info.eedump_len = ops->get_eeprom_len(dev); if (copy_to_user(useraddr, &info, sizeof(info))) return -EFAULT; return 0; } static int ethtool_get_regs(struct net_device *dev, char *useraddr) { struct ethtool_regs regs; struct ethtool_ops *ops = ethtool_ops; void *regbuf; int reglen, ret; if (!ops->get_regs || !ops->get_regs_len) return -EOPNOTSUPP; if (copy_from_user(®s, useraddr, sizeof(regs))) return -EFAULT; reglen = ops->get_regs_len(dev); if (regs.len > reglen) regs.len = reglen; regbuf = kmalloc(reglen, GFP_USER); if (!regbuf) return -ENOMEM; ops->get_regs(dev, ®s, regbuf); ret = -EFAULT; if (copy_to_user(useraddr, ®s, sizeof(regs))) goto out; useraddr += offsetof(struct ethtool_regs, data); if (copy_to_user(useraddr, regbuf, reglen)) goto out; ret = 0; out: kfree(regbuf); return ret; } static int ethtool_get_wol(struct net_device *dev, char *useraddr) { struct ethtool_wolinfo wol = { ETHTOOL_GWOL }; if (!ethtool_ops->get_wol) return -EOPNOTSUPP; ethtool_ops->get_wol(dev, &wol); if (copy_to_user(useraddr, &wol, sizeof(wol))) return -EFAULT; return 0; } static int ethtool_set_wol(struct net_device *dev, char *useraddr) { struct ethtool_wolinfo wol; if (!ethtool_ops->set_wol) return -EOPNOTSUPP; if (copy_from_user(&wol, useraddr, sizeof(wol))) return -EFAULT; return ethtool_ops->set_wol(dev, &wol); } static int ethtool_get_msglevel(struct net_device *dev, char *useraddr) { struct ethtool_value edata = { ETHTOOL_GMSGLVL }; if (!ethtool_ops->get_msglevel) return -EOPNOTSUPP; edata.data = ethtool_ops->get_msglevel(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_msglevel(struct net_device *dev, char *useraddr) { struct ethtool_value edata; if (!ethtool_ops->set_msglevel) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; ethtool_ops->set_msglevel(dev, edata.data); return 0; } static int ethtool_nway_reset(struct net_device *dev) { if (!ethtool_ops->nway_reset) return -EOPNOTSUPP; return ethtool_ops->nway_reset(dev); } static int ethtool_get_link(struct net_device *dev, void *useraddr) { struct ethtool_value edata = { ETHTOOL_GLINK }; if (!ethtool_ops->get_link) return -EOPNOTSUPP; edata.data = ethtool_ops->get_link(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_get_eeprom(struct net_device *dev, void *useraddr) { struct ethtool_eeprom eeprom; struct ethtool_ops *ops = ethtool_ops; u8 *data; int ret; if (!ops->get_eeprom || !ops->get_eeprom_len) return -EOPNOTSUPP; if (copy_from_user(&eeprom, useraddr, sizeof(eeprom))) return -EFAULT; /* Check for wrap and zero */ if (eeprom.offset + eeprom.len <= eeprom.offset) return -EINVAL; /* Check for exceeding total eeprom len */ if (eeprom.offset + eeprom.len > ops->get_eeprom_len(dev)) return -EINVAL; data = kmalloc(eeprom.len, GFP_USER); if (!data) return -ENOMEM; ret = -EFAULT; if (copy_from_user(data, useraddr + sizeof(eeprom), eeprom.len)) goto out; ret = ops->get_eeprom(dev, &eeprom, data); if (ret) goto out; ret = -EFAULT; if (copy_to_user(useraddr, &eeprom, sizeof(eeprom))) goto out; if (copy_to_user(useraddr + sizeof(eeprom), data, eeprom.len)) goto out; ret = 0; out: kfree(data); return ret; } static int ethtool_set_eeprom(struct net_device *dev, void *useraddr) { struct ethtool_eeprom eeprom; struct ethtool_ops *ops = ethtool_ops; u8 *data; int ret; if (!ops->set_eeprom || !ops->get_eeprom_len) return -EOPNOTSUPP; if (copy_from_user(&eeprom, useraddr, sizeof(eeprom))) return -EFAULT; /* Check for wrap and zero */ if (eeprom.offset + eeprom.len <= eeprom.offset) return -EINVAL; /* Check for exceeding total eeprom len */ if (eeprom.offset + eeprom.len > ops->get_eeprom_len(dev)) return -EINVAL; data = kmalloc(eeprom.len, GFP_USER); if (!data) return -ENOMEM; ret = -EFAULT; if (copy_from_user(data, useraddr + sizeof(eeprom), eeprom.len)) goto out; ret = ops->set_eeprom(dev, &eeprom, data); if (ret) goto out; if (copy_to_user(useraddr + sizeof(eeprom), data, eeprom.len)) ret = -EFAULT; out: kfree(data); return ret; } static int ethtool_get_coalesce(struct net_device *dev, void *useraddr) { struct ethtool_coalesce coalesce = { ETHTOOL_GCOALESCE }; if (!ethtool_ops->get_coalesce) return -EOPNOTSUPP; ethtool_ops->get_coalesce(dev, &coalesce); if (copy_to_user(useraddr, &coalesce, sizeof(coalesce))) return -EFAULT; return 0; } static int ethtool_set_coalesce(struct net_device *dev, void *useraddr) { struct ethtool_coalesce coalesce; if (!ethtool_ops->get_coalesce) return -EOPNOTSUPP; if (copy_from_user(&coalesce, useraddr, sizeof(coalesce))) return -EFAULT; return ethtool_ops->set_coalesce(dev, &coalesce); } static int ethtool_get_ringparam(struct net_device *dev, void *useraddr) { struct ethtool_ringparam ringparam = { ETHTOOL_GRINGPARAM }; if (!ethtool_ops->get_ringparam) return -EOPNOTSUPP; ethtool_ops->get_ringparam(dev, &ringparam); if (copy_to_user(useraddr, &ringparam, sizeof(ringparam))) return -EFAULT; return 0; } static int ethtool_set_ringparam(struct net_device *dev, void *useraddr) { struct ethtool_ringparam ringparam; if (!ethtool_ops->get_ringparam) return -EOPNOTSUPP; if (copy_from_user(&ringparam, useraddr, sizeof(ringparam))) return -EFAULT; return ethtool_ops->set_ringparam(dev, &ringparam); } static int ethtool_get_pauseparam(struct net_device *dev, void *useraddr) { struct ethtool_pauseparam pauseparam = { ETHTOOL_GPAUSEPARAM }; if (!ethtool_ops->get_pauseparam) return -EOPNOTSUPP; ethtool_ops->get_pauseparam(dev, &pauseparam); if (copy_to_user(useraddr, &pauseparam, sizeof(pauseparam))) return -EFAULT; return 0; } static int ethtool_set_pauseparam(struct net_device *dev, void *useraddr) { struct ethtool_pauseparam pauseparam; if (!ethtool_ops->get_pauseparam) return -EOPNOTSUPP; if (copy_from_user(&pauseparam, useraddr, sizeof(pauseparam))) return -EFAULT; return ethtool_ops->set_pauseparam(dev, &pauseparam); } static int ethtool_get_rx_csum(struct net_device *dev, char *useraddr) { struct ethtool_value edata = { ETHTOOL_GRXCSUM }; if (!ethtool_ops->get_rx_csum) return -EOPNOTSUPP; edata.data = ethtool_ops->get_rx_csum(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_rx_csum(struct net_device *dev, char *useraddr) { struct ethtool_value edata; if (!ethtool_ops->set_rx_csum) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; ethtool_ops->set_rx_csum(dev, edata.data); return 0; } static int ethtool_get_tx_csum(struct net_device *dev, char *useraddr) { struct ethtool_value edata = { ETHTOOL_GTXCSUM }; if (!ethtool_ops->get_tx_csum) return -EOPNOTSUPP; edata.data = ethtool_ops->get_tx_csum(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_tx_csum(struct net_device *dev, char *useraddr) { struct ethtool_value edata; if (!ethtool_ops->set_tx_csum) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; return ethtool_ops->set_tx_csum(dev, edata.data); } static int ethtool_get_sg(struct net_device *dev, char *useraddr) { struct ethtool_value edata = { ETHTOOL_GSG }; if (!ethtool_ops->get_sg) return -EOPNOTSUPP; edata.data = ethtool_ops->get_sg(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_sg(struct net_device *dev, char *useraddr) { struct ethtool_value edata; if (!ethtool_ops->set_sg) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; return ethtool_ops->set_sg(dev, edata.data); } static int ethtool_get_tso(struct net_device *dev, char *useraddr) { struct ethtool_value edata = { ETHTOOL_GTSO }; if (!ethtool_ops->get_tso) return -EOPNOTSUPP; edata.data = ethtool_ops->get_tso(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_tso(struct net_device *dev, char *useraddr) { struct ethtool_value edata; if (!ethtool_ops->set_tso) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; return ethtool_ops->set_tso(dev, edata.data); } static int ethtool_self_test(struct net_device *dev, char *useraddr) { struct ethtool_test test; struct ethtool_ops *ops = ethtool_ops; u64 *data; int ret; if (!ops->self_test || !ops->self_test_count) return -EOPNOTSUPP; if (copy_from_user(&test, useraddr, sizeof(test))) return -EFAULT; test.len = ops->self_test_count(dev); data = kmalloc(test.len * sizeof(u64), GFP_USER); if (!data) return -ENOMEM; ops->self_test(dev, &test, data); ret = -EFAULT; if (copy_to_user(useraddr, &test, sizeof(test))) goto out; useraddr += sizeof(test); if (copy_to_user(useraddr, data, test.len * sizeof(u64))) goto out; ret = 0; out: kfree(data); return ret; } static int ethtool_get_strings(struct net_device *dev, void *useraddr) { struct ethtool_gstrings gstrings; struct ethtool_ops *ops = ethtool_ops; u8 *data; int ret; if (!ops->get_strings) return -EOPNOTSUPP; if (copy_from_user(&gstrings, useraddr, sizeof(gstrings))) return -EFAULT; switch (gstrings.string_set) { case ETH_SS_TEST: if (!ops->self_test_count) return -EOPNOTSUPP; gstrings.len = ops->self_test_count(dev); break; case ETH_SS_STATS: if (!ops->get_stats_count) return -EOPNOTSUPP; gstrings.len = ops->get_stats_count(dev); break; default: return -EINVAL; } data = kmalloc(gstrings.len * ETH_GSTRING_LEN, GFP_USER); if (!data) return -ENOMEM; ops->get_strings(dev, gstrings.string_set, data); ret = -EFAULT; if (copy_to_user(useraddr, &gstrings, sizeof(gstrings))) goto out; useraddr += sizeof(gstrings); if (copy_to_user(useraddr, data, gstrings.len * ETH_GSTRING_LEN)) goto out; ret = 0; out: kfree(data); return ret; } static int ethtool_phys_id(struct net_device *dev, void *useraddr) { struct ethtool_value id; if (!ethtool_ops->phys_id) return -EOPNOTSUPP; if (copy_from_user(&id, useraddr, sizeof(id))) return -EFAULT; return ethtool_ops->phys_id(dev, id.data); } static int ethtool_get_stats(struct net_device *dev, void *useraddr) { struct ethtool_stats stats; struct ethtool_ops *ops = ethtool_ops; u64 *data; int ret; if (!ops->get_ethtool_stats || !ops->get_stats_count) return -EOPNOTSUPP; if (copy_from_user(&stats, useraddr, sizeof(stats))) return -EFAULT; stats.n_stats = ops->get_stats_count(dev); data = kmalloc(stats.n_stats * sizeof(u64), GFP_USER); if (!data) return -ENOMEM; ops->get_ethtool_stats(dev, &stats, data); ret = -EFAULT; if (copy_to_user(useraddr, &stats, sizeof(stats))) goto out; useraddr += sizeof(stats); if (copy_to_user(useraddr, data, stats.n_stats * sizeof(u64))) goto out; ret = 0; out: kfree(data); return ret; } static int ethtool_ioctl(struct ifreq *ifr) { struct net_device *dev = __dev_get_by_name(ifr->ifr_name); void *useraddr = (void *) ifr->ifr_data; u32 ethcmd; /* * XXX: This can be pushed down into the ethtool_* handlers that * need it. Keep existing behaviour for the moment. */ if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!dev || !netif_device_present(dev)) return -ENODEV; if (copy_from_user(ðcmd, useraddr, sizeof (ethcmd))) return -EFAULT; switch (ethcmd) { case ETHTOOL_GSET: return ethtool_get_settings(dev, useraddr); case ETHTOOL_SSET: return ethtool_set_settings(dev, useraddr); case ETHTOOL_GDRVINFO: return ethtool_get_drvinfo(dev, useraddr); case ETHTOOL_GREGS: return ethtool_get_regs(dev, useraddr); case ETHTOOL_GWOL: return ethtool_get_wol(dev, useraddr); case ETHTOOL_SWOL: return ethtool_set_wol(dev, useraddr); case ETHTOOL_GMSGLVL: return ethtool_get_msglevel(dev, useraddr); case ETHTOOL_SMSGLVL: return ethtool_set_msglevel(dev, useraddr); case ETHTOOL_NWAY_RST: return ethtool_nway_reset(dev); case ETHTOOL_GLINK: return ethtool_get_link(dev, useraddr); case ETHTOOL_GEEPROM: return ethtool_get_eeprom(dev, useraddr); case ETHTOOL_SEEPROM: return ethtool_set_eeprom(dev, useraddr); case ETHTOOL_GCOALESCE: return ethtool_get_coalesce(dev, useraddr); case ETHTOOL_SCOALESCE: return ethtool_set_coalesce(dev, useraddr); case ETHTOOL_GRINGPARAM: return ethtool_get_ringparam(dev, useraddr); case ETHTOOL_SRINGPARAM: return ethtool_set_ringparam(dev, useraddr); case ETHTOOL_GPAUSEPARAM: return ethtool_get_pauseparam(dev, useraddr); case ETHTOOL_SPAUSEPARAM: return ethtool_set_pauseparam(dev, useraddr); case ETHTOOL_GRXCSUM: return ethtool_get_rx_csum(dev, useraddr); case ETHTOOL_SRXCSUM: return ethtool_set_rx_csum(dev, useraddr); case ETHTOOL_GTXCSUM: return ethtool_get_tx_csum(dev, useraddr); case ETHTOOL_STXCSUM: return ethtool_set_tx_csum(dev, useraddr); case ETHTOOL_GSG: return ethtool_get_sg(dev, useraddr); case ETHTOOL_SSG: return ethtool_set_sg(dev, useraddr); case ETHTOOL_GTSO: return ethtool_get_tso(dev, useraddr); case ETHTOOL_STSO: return ethtool_set_tso(dev, useraddr); case ETHTOOL_TEST: return ethtool_self_test(dev, useraddr); case ETHTOOL_GSTRINGS: return ethtool_get_strings(dev, useraddr); case ETHTOOL_PHYS_ID: return ethtool_phys_id(dev, useraddr); case ETHTOOL_GSTATS: return ethtool_get_stats(dev, useraddr); default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } #endif //ETHTOOL_OPS_COMPAT static int rtl8168_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct rtl8168_private *tp = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(ifr); unsigned long flags; void __iomem *ioaddr = tp->mmio_addr; if (!netif_running(dev)) return -ENODEV; switch (cmd) { case SIOCGMIIPHY: data->phy_id = 32; /* Internal PHY */ return 0; case SIOCGMIIREG: spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1F, 0x0000); data->val_out = mdio_read(tp->mmio_addr, data->reg_num & 0x1f); spin_unlock_irqrestore(&tp->phy_lock, flags); return 0; case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) return -EPERM; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(tp->mmio_addr, data->reg_num & 0x1f, data->val_in); spin_unlock_irqrestore(&tp->phy_lock, flags); return 0; #ifdef ETHTOOL_OPS_COMPAT case SIOCETHTOOL: return ethtool_ioctl(ifr); #endif case SIOCDEVPRIVATE_RTLASF: return rtl8168_asf_ioctl(dev, ifr); default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static void rtl8168_phy_power_up (struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x0E, 0x0000); mdio_write(ioaddr, MII_BMCR, BMCR_ANENABLE); spin_unlock_irqrestore(&tp->phy_lock, flags); } static void rtl8168_phy_power_down (struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x0E, 0x0200); mdio_write(ioaddr, MII_BMCR, BMCR_PDOWN); spin_unlock_irqrestore(&tp->phy_lock, flags); } static int __devinit rtl8168_init_board(struct pci_dev *pdev, struct net_device **dev_out, void __iomem **ioaddr_out) { void __iomem *ioaddr; struct net_device *dev; struct rtl8168_private *tp; int rc = -ENOMEM, i, acpi_idle_state = 0, pm_cap; assert(ioaddr_out != NULL); /* dev zeroed in alloc_etherdev */ dev = alloc_etherdev(sizeof (*tp)); if (dev == NULL) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_drv(&debug)) dev_err(&pdev->dev, "unable to alloc new ethernet\n"); #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) goto err_out; } SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); tp = netdev_priv(dev); tp->dev = dev; tp->msg_enable = netif_msg_init(debug.msg_enable, R8168_MSG_DEFAULT); /* enable device (incl. PCI PM wakeup and hotplug setup) */ rc = pci_enable_device(pdev); if (rc < 0) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) dev_err(&pdev->dev, "enable failure\n"); #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) goto err_out_free_dev; } rc = pci_set_mwi(pdev); if (rc < 0) goto err_out_disable; /* save power state before pci_enable_device overwrites it */ pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); if (pm_cap) { u16 pwr_command; pci_read_config_word(pdev, pm_cap + PCI_PM_CTRL, &pwr_command); acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK; } else { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) { dev_err(&pdev->dev, "PowerManagement capability not found.\n"); } #else printk("PowerManagement capability not found.\n"); #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) } /* make sure PCI base addr 1 is MMIO */ if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) dev_err(&pdev->dev, "region #1 not an MMIO resource, aborting\n"); #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) rc = -ENODEV; goto err_out_mwi; } /* check for weird/broken PCI region reporting */ if (pci_resource_len(pdev, 2) < R8168_REGS_SIZE) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n"); #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) rc = -ENODEV; goto err_out_mwi; } rc = pci_request_regions(pdev, MODULENAME); if (rc < 0) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) dev_err(&pdev->dev, "could not request regions.\n"); #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) goto err_out_mwi; } if ((sizeof(dma_addr_t) > 4) && !pci_set_dma_mask(pdev, DMA_64BIT_MASK) && use_dac) { dev->features |= NETIF_F_HIGHDMA; } else { rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (rc < 0) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) dev_err(&pdev->dev, "DMA configuration failed.\n"); #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) goto err_out_free_res; } } pci_set_master(pdev); /* ioremap MMIO region */ ioaddr = ioremap(pci_resource_start(pdev, 2), R8168_REGS_SIZE); if (ioaddr == NULL) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) dev_err(&pdev->dev, "cannot remap MMIO, aborting\n"); #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) rc = -EIO; goto err_out_free_res; } /* Identify chip attached to board */ rtl8168_get_mac_version(tp, ioaddr); rtl8168_print_mac_version(tp); for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--) { if (tp->mcfg == rtl_chip_info[i].mcfg) break; } if (i < 0) { /* Unknown chip: assume array element #0, original RTL-8168 */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) { dev_printk(KERN_DEBUG, &pdev->dev, "unknown chip version, assuming %s\n", rtl_chip_info[0].name); } #else printk("Realtek unknown chip version, assuming %s\n", rtl_chip_info[0].name); #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) i++; } tp->chipset = i; RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(Config1, RTL_R8(Config1) | PMEnable); RTL_W8(Config5, RTL_R8(Config5) & PMEStatus); RTL_W8(Cfg9346, Cfg9346_Lock); *ioaddr_out = ioaddr; *dev_out = dev; out: return rc; err_out_free_res: pci_release_regions(pdev); err_out_mwi: pci_clear_mwi(pdev); err_out_disable: pci_disable_device(pdev); err_out_free_dev: free_netdev(dev); err_out: *ioaddr_out = NULL; *dev_out = NULL; goto out; } static void rtl8168_esd_timer(unsigned long __opaque) { struct net_device *dev = (struct net_device *)__opaque; struct rtl8168_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; struct timer_list *timer = &tp->esd_timer; unsigned long timeout = RTL8168_ESD_TIMEOUT; u8 cmd; u8 cls; u16 io_base_l; u16 io_base_h; u16 mem_base_l; u16 mem_base_h; u8 ilr; u16 resv_0x20_l; u16 resv_0x20_h; u16 resv_0x24_l; u16 resv_0x24_h; tp->esd_flag = 0; pci_read_config_byte(pdev, PCI_COMMAND, &cmd); if (cmd != tp->pci_cfg_space.cmd) { pci_write_config_byte(pdev, PCI_COMMAND, tp->pci_cfg_space.cmd); tp->esd_flag = 1; } pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cls); if (cls != tp->pci_cfg_space.cls) { pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, tp->pci_cfg_space.cls); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_0, &io_base_l); if (io_base_l != tp->pci_cfg_space.io_base_l) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_0, tp->pci_cfg_space.io_base_l); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_0 + 2, &io_base_h); if (io_base_h != tp->pci_cfg_space.io_base_h) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_0 + 2, tp->pci_cfg_space.io_base_h); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_2, &mem_base_l); if (mem_base_l != tp->pci_cfg_space.mem_base_l) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_2, tp->pci_cfg_space.mem_base_l); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_2 + 2, &mem_base_h); if (mem_base_h != tp->pci_cfg_space.mem_base_h) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_2 + 2, tp->pci_cfg_space.mem_base_h); tp->esd_flag = 1; } pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &ilr); if (ilr != tp->pci_cfg_space.ilr) { pci_write_config_byte(pdev, PCI_INTERRUPT_LINE, tp->pci_cfg_space.ilr); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_4, &resv_0x20_l); if (resv_0x20_l != tp->pci_cfg_space.resv_0x20_l) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_4, tp->pci_cfg_space.resv_0x20_l); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_4 + 2, &resv_0x20_h); if (resv_0x20_h != tp->pci_cfg_space.resv_0x20_h) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_4 + 2, tp->pci_cfg_space.resv_0x20_h); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_5, &resv_0x24_l); if (resv_0x24_l != tp->pci_cfg_space.resv_0x24_l) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_5, tp->pci_cfg_space.resv_0x24_l); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_5 + 2, &resv_0x24_h); if (resv_0x24_h != tp->pci_cfg_space.resv_0x24_h) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_5 + 2, tp->pci_cfg_space.resv_0x24_h); tp->esd_flag = 1; } if (tp->esd_flag != 0) { rtl8168_tx_clear(tp); rtl8168_rx_clear(tp); rtl8168_open(dev); tp->esd_flag = 0; } mod_timer(timer, jiffies + timeout); } static void rtl8168_link_timer(unsigned long __opaque) { struct net_device *dev = (struct net_device *)__opaque; struct rtl8168_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->link_timer; unsigned long timeout = RTL8168_LINK_TIMEOUT; if (tp->link_ok(dev) != tp->old_link_status) rtl8168_check_link_status(dev, tp, tp->mmio_addr); tp->old_link_status = tp->link_ok(dev); mod_timer(timer, jiffies + timeout); } /* Cfg9346_Unlock assumed. */ static unsigned rtl8168_try_msi(struct pci_dev *pdev, void __iomem *ioaddr) { unsigned msi = 0; #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,13) if (pci_enable_msi(pdev)) { dev_info(&pdev->dev, "no MSI. Back to INTx.\n"); } else { msi |= RTL_FEATURE_MSI; } #endif return msi; } static void rtl8168_disable_msi(struct pci_dev *pdev, struct rtl8168_private *tp) { if (tp->features & RTL_FEATURE_MSI) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,13) pci_disable_msi(pdev); #endif tp->features &= ~RTL_FEATURE_MSI; } } static int __devinit rtl8168_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev = NULL; struct rtl8168_private *tp; void __iomem *ioaddr = NULL; static int board_idx = -1; u8 autoneg, duplex; u16 speed; u16 mac_addr[4]; int i, rc; assert(pdev != NULL); assert(ent != NULL); board_idx++; if (netif_msg_drv(&debug)) { printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n", MODULENAME, RTL8168_VERSION); } rc = rtl8168_init_board(pdev, &dev, &ioaddr); if (rc) return rc; tp = netdev_priv(dev); assert(ioaddr != NULL); tp->set_speed = rtl8168_set_speed_xmii; tp->get_settings = rtl8168_gset_xmii; tp->phy_reset_enable = rtl8168_xmii_reset_enable; tp->phy_reset_pending = rtl8168_xmii_reset_pending; tp->link_ok = rtl8168_xmii_link_ok; RTL_W8(Cfg9346, Cfg9346_Unlock); tp->features |= rtl8168_try_msi(pdev, ioaddr); RTL_W8(Cfg9346, Cfg9346_Lock); /* Get MAC address from EEPROM */ mac_addr[0] = rtl_eeprom_read_sc(ioaddr, 7); mac_addr[1] = rtl_eeprom_read_sc(ioaddr, 8); mac_addr[2] = rtl_eeprom_read_sc(ioaddr, 9); mac_addr[3] = 0; RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W32(MAC0, (mac_addr[1] << 16) | mac_addr[0]); RTL_W32(MAC4, (mac_addr[3] << 16) | mac_addr[2]); RTL_W8(Cfg9346, Cfg9346_Lock); for (i = 0; i < MAC_ADDR_LEN; i++) dev->dev_addr[i] = RTL_R8(MAC0 + i); #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,13) memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); #endif memcpy(dev->dev_addr, dev->dev_addr, dev->addr_len); dev->open = rtl8168_open; dev->hard_start_xmit = rtl8168_start_xmit; dev->get_stats = rtl8168_get_stats; SET_ETHTOOL_OPS(dev, &rtl8168_ethtool_ops); dev->stop = rtl8168_close; dev->tx_timeout = rtl8168_tx_timeout; dev->set_multicast_list = rtl8168_set_rx_mode; dev->watchdog_timeo = RTL8168_TX_TIMEOUT; dev->irq = pdev->irq; dev->base_addr = (unsigned long) ioaddr; dev->change_mtu = rtl8168_change_mtu; dev->set_mac_address = rtl8168_set_mac_address; dev->do_ioctl = rtl8168_do_ioctl; #ifdef CONFIG_R8168_NAPI RTL_NAPI_CONFIG(dev, tp, rtl8168_poll, R8168_NAPI_WEIGHT); #endif #ifdef CONFIG_R8168_VLAN dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; dev->vlan_rx_register = rtl8168_vlan_rx_register; dev->vlan_rx_kill_vid = rtl8168_vlan_rx_kill_vid; #endif #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = rtl8168_netpoll; #endif dev->features |= NETIF_F_IP_CSUM; tp->cp_cmd |= RxChkSum; tp->cp_cmd |= RTL_R16(CPlusCmd); tp->intr_mask = rtl8168_intr_mask; tp->pci_dev = pdev; tp->mmio_addr = ioaddr; tp->max_jumbo_frame_size = rtl_chip_info[tp->chipset].jumbo_frame_sz; spin_lock_init(&tp->lock); spin_lock_init(&tp->phy_lock); rc = register_netdev(dev); if (rc) { rtl8168_release_board(pdev, dev, ioaddr); return rc; } printk(KERN_INFO "%s: This product is covered by one or more of the following patents: US5,307,459, US5,434,872, US5,732,094, US6,570,884, US6,115,776, and US6,327,625.\n", MODULENAME); if (netif_msg_probe(tp)) { printk(KERN_DEBUG "%s: Identified chip type is '%s'.\n", dev->name, rtl_chip_info[tp->chipset].name); } pci_set_drvdata(pdev, dev); if (netif_msg_probe(tp)) { printk(KERN_INFO "%s: %s at 0x%lx, " "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, " "IRQ %d\n", dev->name, rtl_chip_info[ent->driver_data].name, dev->base_addr, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq); } rtl8168_hw_phy_config(dev); pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x40); rtl8168_link_option(board_idx, &autoneg, &speed, &duplex); rtl8168_set_speed(dev, autoneg, speed, duplex); printk("%s", GPL_CLAIM); return 0; } static void __devexit rtl8168_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8168_private *tp = netdev_priv(dev); assert(dev != NULL); assert(tp != NULL); flush_scheduled_work(); unregister_netdev(dev); rtl8168_disable_msi(pdev, tp); rtl8168_release_board(pdev, dev, tp->mmio_addr); pci_set_drvdata(pdev, NULL); } static void rtl8168_set_rxbufsize(struct rtl8168_private *tp, struct net_device *dev) { void __iomem *ioaddr = tp->mmio_addr; unsigned int mtu = dev->mtu; tp->rx_buf_sz = (mtu > ETH_DATA_LEN) ? mtu + ETH_HLEN + 8 : RX_BUF_SIZE; RTL_W16(RxMaxSize, tp->rx_buf_sz + 1); } static int rtl8168_open(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; int retval; rtl8168_set_rxbufsize(tp, dev); retval = request_irq(dev->irq, rtl8168_interrupt, (tp->features & RTL_FEATURE_MSI) ? 0 : SA_SHIRQ, dev->name, dev); if (retval < 0) goto out; retval = -ENOMEM; /* * Rx and Tx desscriptors needs 256 bytes alignment. * pci_alloc_consistent provides more. */ tp->TxDescArray = pci_alloc_consistent(pdev, R8168_TX_RING_BYTES, &tp->TxPhyAddr); if (!tp->TxDescArray) goto err_free_irq; tp->RxDescArray = pci_alloc_consistent(pdev, R8168_RX_RING_BYTES, &tp->RxPhyAddr); if (!tp->RxDescArray) goto err_free_tx; retval = rtl8168_init_ring(dev); if (retval < 0) goto err_free_rx; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) INIT_WORK(&tp->task, NULL, dev); #else INIT_DELAYED_WORK(&tp->task, NULL); #endif #ifdef CONFIG_R8168_NAPI #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) RTL_NAPI_ENABLE(dev, &tp->napi); #endif #endif rtl8168_hw_start(dev); if (tp->esd_flag == 0) { rtl8168_request_esd_timer(dev); } rtl8168_request_link_timer(dev); rtl8168_dsm(dev, DSM_IF_UP); rtl8168_check_link_status(dev, tp, tp->mmio_addr); out: return retval; err_free_rx: pci_free_consistent(pdev, R8168_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); err_free_tx: pci_free_consistent(pdev, R8168_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); err_free_irq: free_irq(dev->irq, dev); goto out; } static void rtl8168_hw_reset(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; /* Disable interrupts */ rtl8168_irq_mask_and_ack(ioaddr); rtl8168_nic_reset(dev); } static void rtl8168_dsm(struct net_device *dev, int dev_state) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; switch (dev_state) { case DSM_MAC_INIT: if ((tp->mcfg == CFG_METHOD_5) || (tp->mcfg == CFG_METHOD_6)) { if (RTL_R8(MACDBG) & 0x80) { RTL_W8(GPIO, RTL_R8(GPIO) | GPIO_en); } else { RTL_W8(GPIO, RTL_R8(GPIO) & ~GPIO_en); } } break; case DSM_NIC_GOTO_D3: case DSM_IF_DOWN: if ((tp->mcfg == CFG_METHOD_5) || (tp->mcfg == CFG_METHOD_6)) if (RTL_R8(MACDBG) & 0x80) RTL_W8(GPIO, RTL_R8(GPIO) & ~GPIO_en); break; case DSM_NIC_RESUME_D3: case DSM_IF_UP: if ((tp->mcfg == CFG_METHOD_5) || (tp->mcfg == CFG_METHOD_6)) if (RTL_R8(MACDBG) & 0x80) RTL_W8(GPIO, RTL_R8(GPIO) | GPIO_en); break; } } static void rtl8168_hw_start(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct pci_dev *pdev = tp->pci_dev; u8 device_control, options1, options2; u16 ephy_data; u32 csi_tmp; rtl8168_nic_reset(dev); RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(Reserved1, Reserved1_data); tp->cp_cmd |= PktCntrDisable | INTT_1; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_W16(IntrMitigate, 0x5151); //printk("mcfg=%d\n", tp->mcfg); //michael //Work around for RxFIFO overflow if (tp->mcfg == CFG_METHOD_1) { rtl8168_intr_mask |= RxFIFOOver | PCSTimeout; rtl8168_intr_mask &= ~RxDescUnavail; } RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr & DMA_32BIT_MASK)); RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr >> 32)); RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr & DMA_32BIT_MASK)); RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr >> 32)); /* Set Rx Config register */ //rtl8168_set_rx_mode(dev); RTL_W32(RxConfig, RTL_R32(RxConfig) & ~(AcceptErr | AcceptRunt | AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys)); /* Set DMA burst size and Interframe Gap Time */ if (tp->mcfg == CFG_METHOD_1) { RTL_W32(TxConfig, (TX_DMA_BURST_512 << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift)); } else { RTL_W32(TxConfig, (TX_DMA_BURST_unlimited << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift)); } /* Clear the interrupt status register. */ RTL_W16(IntrStatus, 0xFFFF); if (tp->rx_fifo_overflow == 0) { /* Enable all known interrupts by setting the interrupt mask. */ RTL_W16(IntrMask, rtl8168_intr_mask); netif_start_queue(dev); } if (tp->mcfg == CFG_METHOD_4) { /*set PCI configuration space offset 0x70F to 0x27*/ /*When the register offset of PCI configuration space larger than 0xff, use CSI to access it.*/ csi_tmp = rtl8168_csi_read(ioaddr, 0x70c) & 0x00ffffff; rtl8168_csi_write(ioaddr, 0x70c, csi_tmp | 0x27000000); RTL_W8(DBG_reg, (0x0E << 4) | Fix_Nak_1 | Fix_Nak_2); /*Set EPHY registers begin*/ /*Set EPHY register offset 0x02 bit 11 to 0 and bit 12 to 1*/ ephy_data = rtl8168_ephy_read(ioaddr, 0x02); ephy_data &= ~(1 << 11); ephy_data |= (1 << 12); rtl8168_ephy_write(ioaddr, 0x02, ephy_data); /*Set EPHY register offset 0x03 bit 1 to 1*/ ephy_data = rtl8168_ephy_read(ioaddr, 0x03); ephy_data |= (1 << 1); rtl8168_ephy_write(ioaddr, 0x03, ephy_data); /*Set EPHY register offset 0x06 bit 7 to 0*/ ephy_data = rtl8168_ephy_read(ioaddr, 0x06); ephy_data &= ~(1 << 7); rtl8168_ephy_write(ioaddr, 0x06, ephy_data); /*Set EPHY registers end*/ RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); //disable clock request. pci_write_config_byte(pdev, 0x81, 0x00); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~(EnableBist | Macdbgo_oe | Force_halfdup | Force_rxflow_en | Force_txflow_en | Cxpl_dbg_sel | ASF | PktCntrDisable | Macdbgo_sel)); if (dev->mtu > ETH_DATA_LEN) { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) | Jumbo_En1); //Set PCI configuration space offset 0x79 to 0x20 /*Increase the Tx performance*/ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x20; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); //tx checksum offload disable dev->features &= ~NETIF_F_IP_CSUM; //rx checksum offload disable tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } else { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) & ~Jumbo_En1); //Set PCI configuration space offset 0x79 to 0x50 /*Increase the Tx performance*/ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x50; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); //tx checksum offload enable dev->features |= NETIF_F_IP_CSUM; //rx checksum offload enable tp->cp_cmd |= RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } } else if (tp->mcfg == CFG_METHOD_5) { /*set PCI configuration space offset 0x70F to 0x27*/ /*When the register offset of PCI configuration space larger than 0xff, use CSI to access it.*/ csi_tmp = rtl8168_csi_read(ioaddr, 0x70c) & 0x00ffffff; rtl8168_csi_write(ioaddr, 0x70c, csi_tmp | 0x27000000); /******set EPHY registers for RTL8168CP begin******/ //Set EPHY register offset 0x01 bit 0 to 1. ephy_data = rtl8168_ephy_read(ioaddr, 0x01); ephy_data |= (1 << 0); rtl8168_ephy_write(ioaddr, 0x01, ephy_data); //Set EPHY register offset 0x03 bit 10 to 0, bit 9 to 1 and bit 5 to 1. ephy_data = rtl8168_ephy_read(ioaddr, 0x03); ephy_data &= ~(1 << 10); ephy_data |= (1 << 9); ephy_data |= (1 << 5); rtl8168_ephy_write(ioaddr, 0x03, ephy_data); /******set EPHY registers for RTL8168CP end******/ RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); //disable clock request. pci_write_config_byte(pdev, 0x81, 0x00); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~(EnableBist | Macdbgo_oe | Force_halfdup | Force_rxflow_en | Force_txflow_en | Cxpl_dbg_sel | ASF | PktCntrDisable | Macdbgo_sel)); if (dev->mtu > ETH_DATA_LEN) { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) | Jumbo_En1); //Set PCI configuration space offset 0x79 to 0x20 /*Increase the Tx performance*/ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x20; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); //tx checksum offload disable dev->features &= ~NETIF_F_IP_CSUM; //rx checksum offload disable tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } else { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) & ~Jumbo_En1); //Set PCI configuration space offset 0x79 to 0x50 /*Increase the Tx performance*/ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x50; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); //tx checksum offload enable dev->features |= NETIF_F_IP_CSUM; //rx checksum offload enable tp->cp_cmd |= RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } } else if (tp->mcfg == CFG_METHOD_6) { /*set PCI configuration space offset 0x70F to 0x27*/ /*When the register offset of PCI configuration space larger than 0xff, use CSI to access it.*/ csi_tmp = rtl8168_csi_read(ioaddr, 0x70c) & 0x00ffffff; rtl8168_csi_write(ioaddr, 0x70c, csi_tmp | 0x27000000); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); //disable clock request. pci_write_config_byte(pdev, 0x81, 0x00); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~(EnableBist | Macdbgo_oe | Force_halfdup | Force_rxflow_en | Force_txflow_en | Cxpl_dbg_sel | ASF | PktCntrDisable | Macdbgo_sel)); if (dev->mtu > ETH_DATA_LEN) { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) | Jumbo_En1); //Set PCI configuration space offset 0x79 to 0x20 /*Increase the Tx performance*/ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x20; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); //tx checksum offload disable dev->features &= ~NETIF_F_IP_CSUM; //rx checksum offload disable tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } else { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) & ~Jumbo_En1); //Set PCI configuration space offset 0x79 to 0x50 /*Increase the Tx performance*/ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x50; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); //tx checksum offload enable dev->features |= NETIF_F_IP_CSUM; //rx checksum offload enable tp->cp_cmd |= RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } } else if (tp->mcfg == CFG_METHOD_7) { /*set PCI configuration space offset 0x70F to 0x27*/ /*When the register offset of PCI configuration space larger than 0xff, use CSI to access it.*/ csi_tmp = rtl8168_csi_read(ioaddr, 0x70c) & 0x00ffffff; rtl8168_csi_write(ioaddr, 0x70c, csi_tmp | 0x27000000); rtl8168_eri_write(ioaddr, 0x1EC, 1, 0x07, ERIAR_ASF); //disable clock request. pci_write_config_byte(pdev, 0x81, 0x00); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~(EnableBist | Macdbgo_oe | Force_halfdup | Force_rxflow_en | Force_txflow_en | Cxpl_dbg_sel | ASF | PktCntrDisable | Macdbgo_sel)); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); if (dev->mtu > ETH_DATA_LEN) { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) | Jumbo_En1); //Set PCI configuration space offset 0x79 to 0x20 /*Increase the Tx performance*/ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x20; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); //tx checksum offload disable dev->features &= ~NETIF_F_IP_CSUM; //rx checksum offload disable tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } else { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) & ~Jumbo_En1); //Set PCI configuration space offset 0x79 to 0x50 /*Increase the Tx performance*/ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x50; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); //tx checksum offload enable dev->features |= NETIF_F_IP_CSUM; //rx checksum offload enable tp->cp_cmd |= RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } } else if (tp->mcfg == CFG_METHOD_8) { /*set PCI configuration space offset 0x70F to 0x27*/ /*When the register offset of PCI configuration space larger than 0xff, use CSI to access it.*/ csi_tmp = rtl8168_csi_read(ioaddr, 0x70c) & 0x00ffffff; rtl8168_csi_write(ioaddr, 0x70c, csi_tmp | 0x27000000); rtl8168_eri_write(ioaddr, 0x1EC, 1, 0x07, ERIAR_ASF); //disable clock request. pci_write_config_byte(pdev, 0x81, 0x00); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~(EnableBist | Macdbgo_oe | Force_halfdup | Force_rxflow_en | Force_txflow_en | Cxpl_dbg_sel | ASF | PktCntrDisable | Macdbgo_sel)); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); RTL_W8(0xD1, 0x20); if (dev->mtu > ETH_DATA_LEN) { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) | Jumbo_En1); //Set PCI configuration space offset 0x79 to 0x20 /*Increase the Tx performance*/ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x20; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); //tx checksum offload disable dev->features &= ~NETIF_F_IP_CSUM; //rx checksum offload disable tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } else { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) & ~Jumbo_En1); //Set PCI configuration space offset 0x79 to 0x50 /*Increase the Tx performance*/ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x50; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); //tx checksum offload enable dev->features |= NETIF_F_IP_CSUM; //rx checksum offload enable tp->cp_cmd |= RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } } else if (tp->mcfg == CFG_METHOD_9) { /*set PCI configuration space offset 0x70F to 0x13*/ /*When the register offset of PCI configuration space larger than 0xff, use CSI to access it.*/ csi_tmp = rtl8168_csi_read(ioaddr, 0x70c) & 0x00ffffff; rtl8168_csi_write(ioaddr, 0x70c, csi_tmp | 0x13000000); /* disable clock request. */ pci_write_config_byte(pdev, 0x81, 0x00); RTL_W8(Config3, RTL_R8(Config3) & ~BIT_4); RTL_W8(DBG_reg, RTL_R8(DBG_reg) | BIT_7 | BIT_1); if (dev->mtu > ETH_DATA_LEN) { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) | Jumbo_En1); /* Set PCI configuration space offset 0x79 to 0x20 */ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x20; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); /* tx checksum offload disable */ dev->features &= ~NETIF_F_IP_CSUM; /* rx checksum offload disable */ tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } else { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) & ~Jumbo_En1); /* Set PCI configuration space offset 0x79 to 0x50 */ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x50; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); /* tx checksum offload enable */ dev->features |= NETIF_F_IP_CSUM; /* rx checksum offload enable */ tp->cp_cmd |= RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } /* set EPHY registers */ rtl8168_ephy_write(ioaddr, 0x01, 0x7C7D); rtl8168_ephy_write(ioaddr, 0x02, 0x091F); rtl8168_ephy_write(ioaddr, 0x06, 0xB271); rtl8168_ephy_write(ioaddr, 0x07, 0xCE00); } else if (tp->mcfg == CFG_METHOD_10) { /*set PCI configuration space offset 0x70F to 0x13*/ /*When the register offset of PCI configuration space larger than 0xff, use CSI to access it.*/ csi_tmp = rtl8168_csi_read(ioaddr, 0x70c) & 0x00ffffff; rtl8168_csi_write(ioaddr, 0x70c, csi_tmp | 0x13000000); RTL_W8(DBG_reg, RTL_R8(DBG_reg) | BIT_7 | BIT_1); if (dev->mtu > ETH_DATA_LEN) { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) | Jumbo_En1); /* Set PCI configuration space offset 0x79 to 0x20 */ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x20; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); /* tx checksum offload disable */ dev->features &= ~NETIF_F_IP_CSUM; /* rx checksum offload disable */ tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } else { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0); RTL_W8(Config4, RTL_R8(Config4) & ~Jumbo_En1); /* Set PCI configuration space offset 0x79 to 0x50 */ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x50; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); /* tx checksum offload enable */ dev->features |= NETIF_F_IP_CSUM; /* rx checksum offload enable */ tp->cp_cmd |= RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } RTL_W8(Config1, 0xDF); /* set EPHY registers */ rtl8168_ephy_write(ioaddr, 0x01, 0x6C7F); rtl8168_ephy_write(ioaddr, 0x02, 0x011F); rtl8168_ephy_write(ioaddr, 0x03, 0xC1B2); rtl8168_ephy_write(ioaddr, 0x1A, 0x0546); rtl8168_ephy_write(ioaddr, 0x1C, 0x80C4); rtl8168_ephy_write(ioaddr, 0x1D, 0x78E4); rtl8168_ephy_write(ioaddr, 0x0A, 0x8100); /* disable clock request. */ pci_write_config_byte(pdev, 0x81, 0x00); RTL_W8(0xF3, RTL_R8(0xF3) | (1 << 2)); } else if (tp->mcfg == CFG_METHOD_11) { /*set PCI configuration space offset 0x70F to 0x37*/ /*When the register offset of PCI configuration space larger than 0xff, use CSI to access it.*/ csi_tmp = rtl8168_csi_read(ioaddr, 0x70c) & 0x00ffffff; rtl8168_csi_write(ioaddr, 0x70c, csi_tmp | 0x37000000); /* Set PCI configuration space offset 0x79 to 0x50 */ pci_read_config_byte(pdev, 0x79, &device_control); device_control &= ~0x70; //device_control |= 0x50; device_control |= 0x10; //michael pci_write_config_byte(pdev, 0x79, device_control); if (dev->mtu > ETH_DATA_LEN) { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0); /* tx checksum offload disable */ dev->features &= ~NETIF_F_IP_CSUM; /* rx checksum offload disable */ tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } else { RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0); /* tx checksum offload enable */ dev->features |= NETIF_F_IP_CSUM; /* rx checksum offload enable */ tp->cp_cmd |= RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); } RTL_W8(Config1, 0xDF); } else if (tp->mcfg == CFG_METHOD_1) { RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~(EnableBist | Macdbgo_oe | Force_halfdup | Force_rxflow_en | Force_txflow_en | Cxpl_dbg_sel | ASF | PktCntrDisable | Macdbgo_sel)); if (dev->mtu > ETH_DATA_LEN) { pci_read_config_byte(pdev, 0x69, &device_control); device_control &= ~0x70; device_control |= 0x28; pci_write_config_byte(pdev, 0x69, device_control); } else { pci_read_config_byte(pdev, 0x69, &device_control); device_control &= ~0x70; device_control |= 0x58; pci_write_config_byte(pdev, 0x69, device_control); } } else if (tp->mcfg == CFG_METHOD_2) { RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~(EnableBist | Macdbgo_oe | Force_halfdup | Force_rxflow_en | Force_txflow_en | Cxpl_dbg_sel | ASF | PktCntrDisable | Macdbgo_sel)); if (dev->mtu > ETH_DATA_LEN) { pci_read_config_byte(pdev, 0x69, &device_control); device_control &= ~0x70; device_control |= 0x28; pci_write_config_byte(pdev, 0x69, device_control); RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config4, RTL_R8(Config4) | (1 << 0)); } else { pci_read_config_byte(pdev, 0x69, &device_control); device_control &= ~0x70; device_control |= 0x58; pci_write_config_byte(pdev, 0x69, device_control); RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0)); } } else if (tp->mcfg == CFG_METHOD_3) { RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~(EnableBist | Macdbgo_oe | Force_halfdup | Force_rxflow_en | Force_txflow_en | Cxpl_dbg_sel | ASF | PktCntrDisable | Macdbgo_sel)); if (dev->mtu > ETH_DATA_LEN) { pci_read_config_byte(pdev, 0x69, &device_control); device_control &= ~0x70; device_control |= 0x28; pci_write_config_byte(pdev, 0x69, device_control); RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config4, RTL_R8(Config4) | (1 << 0)); } else { pci_read_config_byte(pdev, 0x69, &device_control); device_control &= ~0x70; device_control |= 0x58; pci_write_config_byte(pdev, 0x69, device_control); RTL_W8(Reserved1, Reserved1_data); RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0)); } } if ((tp->mcfg == CFG_METHOD_1) || (tp->mcfg == CFG_METHOD_2) || (tp->mcfg == CFG_METHOD_3)) { /* csum offload command for RTL8168B/8111B */ tp->tx_tcp_csum_cmd = TxIPCS | TxTCPCS; tp->tx_udp_csum_cmd = TxIPCS | TxUDPCS; tp->tx_ip_csum_cmd = TxIPCS; } else { /* csum offload command for RTL8168C/8111C and RTL8168CP/8111CP */ tp->tx_tcp_csum_cmd = TxIPCS_C | TxTCPCS_C; tp->tx_udp_csum_cmd = TxIPCS_C | TxUDPCS_C; tp->tx_ip_csum_cmd = TxIPCS_C; } RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); /* Set Rx Config register */ rtl8168_set_rx_mode(dev); RTL_W8(Cfg9346, Cfg9346_Lock); if (!tp->pci_cfg_is_read) { pci_read_config_byte(pdev, PCI_COMMAND, &tp->pci_cfg_space.cmd); pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &tp->pci_cfg_space.cls); pci_read_config_word(pdev, PCI_BASE_ADDRESS_0, &tp->pci_cfg_space.io_base_l); pci_read_config_word(pdev, PCI_BASE_ADDRESS_0 + 2, &tp->pci_cfg_space.io_base_h); pci_read_config_word(pdev, PCI_BASE_ADDRESS_2, &tp->pci_cfg_space.mem_base_l); pci_read_config_word(pdev, PCI_BASE_ADDRESS_2 + 2, &tp->pci_cfg_space.mem_base_h); pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &tp->pci_cfg_space.ilr); pci_read_config_word(pdev, PCI_BASE_ADDRESS_4, &tp->pci_cfg_space.resv_0x20_l); pci_read_config_word(pdev, PCI_BASE_ADDRESS_4 + 2, &tp->pci_cfg_space.resv_0x20_h); pci_read_config_word(pdev, PCI_BASE_ADDRESS_5, &tp->pci_cfg_space.resv_0x24_l); pci_read_config_word(pdev, PCI_BASE_ADDRESS_5 + 2, &tp->pci_cfg_space.resv_0x24_h); tp->pci_cfg_is_read = 1; } rtl8168_dsm(dev, DSM_MAC_INIT); options1 = RTL_R8(Config3); options2 = RTL_R8(Config5); if ((options1 & LinkUp) || (options1 & MagicPacket) || (options2 & UWF) || (options2 & BWF) || (options2 & MWF)) tp->wol_enabled = WOL_ENABLED; else tp->wol_enabled = WOL_DISABLED; udelay(10); } static int rtl8168_change_mtu(struct net_device *dev, int new_mtu) { struct rtl8168_private *tp = netdev_priv(dev); int ret = 0; if (new_mtu < ETH_ZLEN || new_mtu > tp->max_jumbo_frame_size) return -EINVAL; if (!netif_running(dev)) goto out; rtl8168_down(dev); dev->mtu = new_mtu; rtl8168_set_rxbufsize(tp, dev); ret = rtl8168_init_ring(dev); if (ret < 0) goto out; #ifdef CONFIG_R8168_NAPI #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) RTL_NAPI_ENABLE(dev, &tp->napi); #endif #endif//CONFIG_R8168_NAPI rtl8168_hw_start(dev); rtl8168_set_speed(dev, AUTONEG_ENABLE, SPEED_1000, AUTONEG_ENABLE); out: return ret; } static inline void rtl8168_make_unusable_by_asic(struct RxDesc *desc) { desc->addr = 0x0badbadbadbadbadull; desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask); } static void rtl8168_free_rx_skb(struct rtl8168_private *tp, struct sk_buff **sk_buff, struct RxDesc *desc) { struct pci_dev *pdev = tp->pci_dev; pci_unmap_single(pdev, le64_to_cpu(desc->addr), tp->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb(*sk_buff); *sk_buff = NULL; rtl8168_make_unusable_by_asic(desc); } static inline void rtl8168_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz) { u32 eor = le32_to_cpu(desc->opts1) & RingEnd; desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz); } static inline void rtl8168_map_to_asic(struct RxDesc *desc, dma_addr_t mapping, u32 rx_buf_sz) { desc->addr = cpu_to_le64(mapping); wmb(); rtl8168_mark_to_asic(desc, rx_buf_sz); } static int rtl8168_alloc_rx_skb(struct pci_dev *pdev, struct sk_buff **sk_buff, struct RxDesc *desc, int rx_buf_sz) { struct sk_buff *skb; dma_addr_t mapping; int ret = 0; skb = dev_alloc_skb(rx_buf_sz + NET_IP_ALIGN); if (!skb) goto err_out; skb_reserve(skb, NET_IP_ALIGN); *sk_buff = skb; mapping = pci_map_single(pdev, skb->data, rx_buf_sz, PCI_DMA_FROMDEVICE); rtl8168_map_to_asic(desc, mapping, rx_buf_sz); out: return ret; err_out: ret = -ENOMEM; rtl8168_make_unusable_by_asic(desc); goto out; } static void rtl8168_rx_clear(struct rtl8168_private *tp) { int i; for (i = 0; i < NUM_RX_DESC; i++) { if (tp->Rx_skbuff[i]) { rtl8168_free_rx_skb(tp, tp->Rx_skbuff + i, tp->RxDescArray + i); } } } static u32 rtl8168_rx_fill(struct rtl8168_private *tp, struct net_device *dev, u32 start, u32 end) { u32 cur; for (cur = start; end - cur > 0; cur++) { int ret, i = cur % NUM_RX_DESC; if (tp->Rx_skbuff[i]) continue; ret = rtl8168_alloc_rx_skb(tp->pci_dev, tp->Rx_skbuff + i, tp->RxDescArray + i, tp->rx_buf_sz); if (ret < 0) break; } return cur - start; } static inline void rtl8168_mark_as_last_descriptor(struct RxDesc *desc) { desc->opts1 |= cpu_to_le32(RingEnd); } static void rtl8168_init_ring_indexes(struct rtl8168_private *tp) { tp->dirty_tx = 0; tp->dirty_rx = 0; tp->cur_tx = 0; tp->cur_rx = 0; } static void rtl8168_tx_desc_init(struct rtl8168_private *tp) { int i = 0; memset(tp->TxDescArray, 0x0, NUM_TX_DESC * sizeof(struct TxDesc)); for (i = 0; i < NUM_TX_DESC; i++) if(i == (NUM_TX_DESC - 1)) tp->TxDescArray[i].opts1 = cpu_to_le32(RingEnd); } static void rtl8168_rx_desc_offset0_init(struct rtl8168_private *tp, int own) { int i = 0; int ownbit = 0; if (own) ownbit = DescOwn; for (i = 0; i < NUM_RX_DESC; i++) { if(i == (NUM_RX_DESC - 1)) tp->RxDescArray[i].opts1 = cpu_to_le32((ownbit | RingEnd) | (unsigned long)tp->rx_buf_sz); else tp->RxDescArray[i].opts1 = cpu_to_le32(ownbit | (unsigned long)tp->rx_buf_sz); } } static void rtl8168_rx_desc_init(struct rtl8168_private *tp) { memset(tp->RxDescArray, 0x0, NUM_RX_DESC * sizeof(struct RxDesc)); rtl8168_rx_desc_offset0_init(tp, 1); } static int rtl8168_init_ring(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); rtl8168_init_ring_indexes(tp); memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info)); memset(tp->Rx_skbuff, 0x0, NUM_RX_DESC * sizeof(struct sk_buff *)); rtl8168_tx_desc_init(tp); rtl8168_rx_desc_init(tp); if (rtl8168_rx_fill(tp, dev, 0, NUM_RX_DESC) != NUM_RX_DESC) goto err_out; rtl8168_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1); return 0; err_out: rtl8168_rx_clear(tp); return -ENOMEM; } static void rtl8168_unmap_tx_skb(struct pci_dev *pdev, struct ring_info *tx_skb, struct TxDesc *desc) { unsigned int len = tx_skb->len; pci_unmap_single(pdev, le64_to_cpu(desc->addr), len, PCI_DMA_TODEVICE); desc->opts1 = 0x00; desc->opts2 = 0x00; desc->addr = 0x00; tx_skb->len = 0; } static void rtl8168_tx_clear(struct rtl8168_private *tp) { unsigned int i; struct net_device *dev = tp->dev; for (i = tp->dirty_tx; i < tp->dirty_tx + NUM_TX_DESC; i++) { unsigned int entry = i % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; unsigned int len = tx_skb->len; if (len) { struct sk_buff *skb = tx_skb->skb; rtl8168_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry); if (skb) { dev_kfree_skb(skb); tx_skb->skb = NULL; } RTLDEV->stats.tx_dropped++; } } tp->cur_tx = tp->dirty_tx = 0; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) static void rtl8168_schedule_work(struct net_device *dev, void (*task)(void *)) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) struct rtl8168_private *tp = netdev_priv(dev); PREPARE_WORK(&tp->task, task, dev); schedule_delayed_work(&tp->task, 4); #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) } #else static void rtl8168_schedule_work(struct net_device *dev, work_func_t task) { struct rtl8168_private *tp = netdev_priv(dev); PREPARE_DELAYED_WORK(&tp->task, task); schedule_delayed_work(&tp->task, 4); } #endif static void rtl8168_wait_for_quiescence(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; synchronize_irq(dev->irq); /* Wait for any pending NAPI task to complete */ #ifdef CONFIG_R8168_NAPI #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) RTL_NAPI_DISABLE(dev, &tp->napi); #endif #endif//CONFIG_R8168_NAPI rtl8168_irq_mask_and_ack(ioaddr); #ifdef CONFIG_R8168_NAPI #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) RTL_NAPI_ENABLE(dev, &tp->napi); #endif #endif//CONFIG_R8168_NAPI } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) static void rtl8168_reinit_task(void *_data) #else static void rtl8168_reinit_task(struct work_struct *work) #endif { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) struct net_device *dev = _data; #else struct rtl8168_private *tp = container_of(work, struct rtl8168_private, task.work); struct net_device *dev = tp->dev; #endif int ret; if (netif_running(dev)) { rtl8168_wait_for_quiescence(dev); rtl8168_close(dev); } ret = rtl8168_open(dev); if (unlikely(ret < 0)) { if (net_ratelimit()) { struct rtl8168_private *tp = netdev_priv(dev); if (netif_msg_drv(tp)) { printk(PFX KERN_ERR "%s: reinit failure (status = %d)." " Rescheduling.\n", dev->name, ret); } } rtl8168_schedule_work(dev, rtl8168_reinit_task); } } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) static void rtl8168_reset_task(void *_data) { struct net_device *dev = _data; struct rtl8168_private *tp = netdev_priv(dev); #else static void rtl8168_reset_task(struct work_struct *work) { struct rtl8168_private *tp = container_of(work, struct rtl8168_private, task.work); struct net_device *dev = tp->dev; #endif if (!netif_running(dev)) return; rtl8168_wait_for_quiescence(dev); rtl8168_rx_interrupt(dev, tp, tp->mmio_addr, ~(u32)0); rtl8168_tx_clear(tp); if (tp->dirty_rx == tp->cur_rx) { rtl8168_init_ring_indexes(tp); rtl8168_hw_start(dev); netif_wake_queue(dev); } else { if (net_ratelimit()) { struct rtl8168_private *tp = netdev_priv(dev); if (netif_msg_intr(tp)) { printk(PFX KERN_EMERG "%s: Rx buffers shortage\n", dev->name); } } rtl8168_schedule_work(dev, rtl8168_reset_task); } } static void rtl8168_tx_timeout(struct net_device *dev) { rtl8168_hw_reset(dev); /* Let's wait a bit while any (async) irq lands on */ rtl8168_schedule_work(dev, rtl8168_reset_task); } static int rtl8168_xmit_frags(struct rtl8168_private *tp, struct sk_buff *skb, u32 opts1) { struct skb_shared_info *info = skb_shinfo(skb); unsigned int cur_frag, entry; struct TxDesc *txd = NULL; entry = tp->cur_tx; for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) { skb_frag_t *frag = info->frags + cur_frag; dma_addr_t mapping; u32 status, len; void *addr; entry = (entry + 1) % NUM_TX_DESC; txd = tp->TxDescArray + entry; len = frag->size; addr = ((void *) page_address(frag->page)) + frag->page_offset; mapping = pci_map_single(tp->pci_dev, addr, len, PCI_DMA_TODEVICE); /* anti gcc 2.95.3 bugware (sic) */ status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC)); txd->opts1 = cpu_to_le32(status); txd->addr = cpu_to_le64(mapping); tp->tx_skb[entry].len = len; } if (cur_frag) { tp->tx_skb[entry].skb = skb; txd->opts1 |= cpu_to_le32(LastFrag); } return cur_frag; } static inline u32 rtl8168_tso(struct sk_buff *skb, struct net_device *dev) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (dev->features & NETIF_F_TSO) { u32 mss = skb_shinfo(skb)->gso_size; if (mss) return LargeSend | ((mss & MSSMask) << MSSShift); } #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) return 0; } static inline u32 rtl8168_tx_csum(struct sk_buff *skb, struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22) const struct iphdr *ip = skb->nh.iph; #else const struct iphdr *ip = ip_hdr(skb); #endif if (skb->ip_summed == CHECKSUM_PARTIAL) { if (ip->protocol == IPPROTO_TCP) return tp->tx_tcp_csum_cmd; else if (ip->protocol == IPPROTO_UDP) return tp->tx_udp_csum_cmd; else if (ip->protocol == IPPROTO_IP) return tp->tx_ip_csum_cmd; #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) WARN_ON(1); /* we need a WARN() */ #endif } return 0; } static int rtl8168_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); unsigned int frags, entry = tp->cur_tx % NUM_TX_DESC; struct TxDesc *txd = tp->TxDescArray + entry; void __iomem *ioaddr = tp->mmio_addr; dma_addr_t mapping; u32 status1, status2, len; u32 opts1 = 0; u32 opts2 = 0; int ret = NETDEV_TX_OK; //Work around for rx fifo overflow if (tp->rx_fifo_overflow == 1) goto err_stop; if (unlikely(TX_BUFFS_AVAIL(tp) < skb_shinfo(skb)->nr_frags)) { if (netif_msg_drv(tp)) { printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n", dev->name); } goto err_stop; } if (unlikely(le32_to_cpu(txd->opts1) & DescOwn)) goto err_stop; opts1 = DescOwn | rtl8168_tso(skb, dev); if (dev->features & NETIF_F_IP_CSUM) { if ((tp->mcfg == CFG_METHOD_1) || (tp->mcfg == CFG_METHOD_2) || (tp->mcfg == CFG_METHOD_3)) opts1 |= rtl8168_tx_csum(skb, dev); else opts2 = rtl8168_tx_csum(skb, dev); } frags = rtl8168_xmit_frags(tp, skb, opts1); if (frags) { len = skb_headlen(skb); opts1 |= FirstFrag; } else { len = skb->len; opts1 |= FirstFrag | LastFrag; tp->tx_skb[entry].skb = skb; } mapping = pci_map_single(tp->pci_dev, skb->data, len, PCI_DMA_TODEVICE); tp->tx_skb[entry].len = len; txd->addr = cpu_to_le64(mapping); txd->opts2 = cpu_to_le32(rtl8168_tx_vlan_tag(tp, skb)); wmb(); /* anti gcc 2.95.3 bugware (sic) */ status1 = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC)); status2 = opts2; txd->opts1 = cpu_to_le32(status1); txd->opts2 = cpu_to_le32(status2); dev->trans_start = jiffies; tp->cur_tx += frags + 1; smp_wmb(); RTL_W8(TxPoll, NPQ); /* set polling bit */ if (TX_BUFFS_AVAIL(tp) < MAX_SKB_FRAGS) { netif_stop_queue(dev); smp_rmb(); if (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS) netif_wake_queue(dev); } out: return ret; err_stop: netif_stop_queue(dev); ret = NETDEV_TX_BUSY; RTLDEV->stats.tx_dropped++; goto out; } static void rtl8168_pcierr_interrupt(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; u16 pci_status, pci_cmd; pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); pci_read_config_word(pdev, PCI_STATUS, &pci_status); if (netif_msg_intr(tp)) { printk(KERN_ERR "%s: PCI error (cmd = 0x%04x, status = 0x%04x).\n", dev->name, pci_cmd, pci_status); } /* * The recovery sequence below admits a very elaborated explanation: * - it seems to work; * - I did not see what else could be done. * * Feel free to adjust to your needs. */ pci_write_config_word(pdev, PCI_COMMAND, pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); pci_write_config_word(pdev, PCI_STATUS, pci_status & (PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT)); rtl8168_hw_reset(dev); } static void rtl8168_tx_interrupt(struct net_device *dev, struct rtl8168_private *tp, void __iomem *ioaddr) { unsigned int dirty_tx, tx_left; assert(dev != NULL); assert(tp != NULL); assert(ioaddr != NULL); dirty_tx = tp->dirty_tx; smp_rmb(); tx_left = tp->cur_tx - dirty_tx; while (tx_left > 0) { unsigned int entry = dirty_tx % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; u32 len = tx_skb->len; u32 status; rmb(); status = le32_to_cpu(tp->TxDescArray[entry].opts1); if (status & DescOwn) break; RTLDEV->stats.tx_bytes += len; RTLDEV->stats.tx_packets++; rtl8168_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry); if (status & LastFrag) { dev_kfree_skb_irq(tx_skb->skb); tx_skb->skb = NULL; } dirty_tx++; tx_left--; } if (tp->dirty_tx != dirty_tx) { tp->dirty_tx = dirty_tx; smp_wmb(); if (netif_queue_stopped(dev) && (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)) { netif_wake_queue(dev); } } } static inline int rtl8168_fragmented_frame(u32 status) { return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag); } static inline void rtl8168_rx_csum(struct rtl8168_private *tp, struct sk_buff *skb, struct RxDesc *desc) { u32 opts1 = le32_to_cpu(desc->opts1); u32 opts2 = le32_to_cpu(desc->opts2); u32 status = opts1 & RxProtoMask; if ((tp->mcfg == CFG_METHOD_1) || (tp->mcfg == CFG_METHOD_2) || (tp->mcfg == CFG_METHOD_3)) { /* rx csum offload for RTL8168B/8111B */ if (((status == RxProtoTCP) && !(opts1 & RxTCPF)) || ((status == RxProtoUDP) && !(opts1 & RxUDPF)) || ((status == RxProtoIP) && !(opts1 & RxIPF))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; } else { /* rx csum offload for RTL8168C/8111C and RTL8168CP/8111CP */ if (((status == RxTCPT) && !(opts1 & RxTCPF)) || ((status == RxUDPT) && !(opts1 & RxUDPF)) || ((status == 0) && (opts2 & RxV4F) && !(opts1 & RxIPF))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; } } static inline int rtl8168_try_rx_copy(struct sk_buff **sk_buff, int pkt_size, struct RxDesc *desc, int rx_buf_sz) { int ret = -1; if (pkt_size < rx_copybreak) { struct sk_buff *skb; skb = dev_alloc_skb(pkt_size + NET_IP_ALIGN); if (skb) { skb_reserve(skb, NET_IP_ALIGN); eth_copy_and_sum(skb, sk_buff[0]->data, pkt_size, 0); *sk_buff = skb; rtl8168_mark_to_asic(desc, rx_buf_sz); ret = 0; } } return ret; } static int rtl8168_rx_interrupt(struct net_device *dev, struct rtl8168_private *tp, void __iomem *ioaddr, u32 budget) { unsigned int cur_rx, rx_left; unsigned int delta, count = 0; u32 rx_quota = RTL_RX_QUOTA(dev, budget); assert(dev != NULL); assert(tp != NULL); assert(ioaddr != NULL); cur_rx = tp->cur_rx; rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx; rx_left = rtl8168_rx_quota(rx_left, (u32) rx_quota); if ((tp->RxDescArray == NULL) || (tp->Rx_skbuff == NULL)) { goto rx_out; } for (; rx_left > 0; rx_left--, cur_rx++) { unsigned int entry = cur_rx % NUM_RX_DESC; struct RxDesc *desc = tp->RxDescArray + entry; u32 status; rmb(); status = le32_to_cpu(desc->opts1); if (status & DescOwn) break; if (unlikely(status & RxRES)) { if (netif_msg_rx_err(tp)) { printk(KERN_INFO "%s: Rx ERROR. status = %08x\n", dev->name, status); } RTLDEV->stats.rx_errors++; if (status & (RxRWT | RxRUNT)) RTLDEV->stats.rx_length_errors++; if (status & RxCRC) RTLDEV->stats.rx_crc_errors++; rtl8168_mark_to_asic(desc, tp->rx_buf_sz); } else { struct sk_buff *skb = tp->Rx_skbuff[entry]; int pkt_size = (status & 0x00003FFF) - 4; void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int) = pci_dma_sync_single_for_device; /* * The driver does not support incoming fragmented * frames. They are seen as a symptom of over-mtu * sized frames. */ if (unlikely(rtl8168_fragmented_frame(status))) { RTLDEV->stats.rx_dropped++; RTLDEV->stats.rx_length_errors++; rtl8168_mark_to_asic(desc, tp->rx_buf_sz); continue; } if (tp->cp_cmd & RxChkSum) rtl8168_rx_csum(tp, skb, desc); pci_dma_sync_single_for_cpu(tp->pci_dev, le64_to_cpu(desc->addr), tp->rx_buf_sz, PCI_DMA_FROMDEVICE); if (rtl8168_try_rx_copy(&skb, pkt_size, desc, tp->rx_buf_sz)) { pci_action = pci_unmap_single; tp->Rx_skbuff[entry] = NULL; } pci_action(tp->pci_dev, le64_to_cpu(desc->addr), tp->rx_buf_sz, PCI_DMA_FROMDEVICE); skb->dev = dev; skb_put(skb, pkt_size); skb->protocol = eth_type_trans(skb, dev); if (rtl8168_rx_vlan_skb(tp, desc, skb) < 0) rtl8168_rx_skb(skb); dev->last_rx = jiffies; RTLDEV->stats.rx_bytes += pkt_size; RTLDEV->stats.rx_packets++; } } count = cur_rx - tp->cur_rx; tp->cur_rx = cur_rx; delta = rtl8168_rx_fill(tp, dev, tp->dirty_rx, tp->cur_rx); if (!delta && count && netif_msg_intr(tp)) printk(KERN_INFO "%s: no Rx buffer allocated\n", dev->name); tp->dirty_rx += delta; /* * FIXME: until there is periodic timer to try and refill the ring, * a temporary shortage may definitely kill the Rx process. * - disable the asic to try and avoid an overflow and kick it again * after refill ? * - how do others driver handle this condition (Uh oh...). */ if ((tp->dirty_rx + NUM_RX_DESC == tp->cur_rx) && netif_msg_intr(tp)) printk(KERN_EMERG "%s: Rx buffers exhausted\n", dev->name); rx_out: return count; } /* *The interrupt handler does all of the Rx thread work and cleans up after *the Tx thread. */ #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) static irqreturn_t rtl8168_interrupt(int irq, void *dev_instance, struct pt_regs *regs) #else static irqreturn_t rtl8168_interrupt(int irq, void *dev_instance) #endif { struct net_device *dev = (struct net_device *) dev_instance; struct rtl8168_private *tp = netdev_priv(dev); int boguscnt = max_interrupt_work; void __iomem *ioaddr = tp->mmio_addr; int status; int handled = 0; u16 intr_clean_mask = SYSErr | PCSTimeout | SWInt | LinkChg | RxDescUnavail | TxErr | TxOK | RxErr | RxOK; RTL_W16(IntrMask, 0x0000); do { status = RTL_R16(IntrStatus); /* hotplug/major error/no more work/shared irq */ if ((status == 0xFFFF) || !status) break; handled = 1; if (unlikely(!netif_running(dev))) { rtl8168_asic_down(dev); goto out; } status &= (tp->intr_mask | TxDescUnavail); RTL_W16(IntrStatus, intr_clean_mask); if (!(status & rtl8168_intr_mask)) break; //Work around for rx fifo overflow if (unlikely(status & RxFIFOOver)) if (tp->mcfg == CFG_METHOD_1) { tp->rx_fifo_overflow = 1; netif_stop_queue(dev); udelay(300); rtl8168_rx_clear(tp); rtl8168_init_ring(dev); rtl8168_hw_start(dev); RTL_W16(IntrStatus, RxFIFOOver); netif_wake_queue(dev); tp->rx_fifo_overflow = 0; } if (unlikely(status & SYSErr)) { rtl8168_pcierr_interrupt(dev); break; } if (status & LinkChg) rtl8168_check_link_status(dev, tp, ioaddr); if ((status & TxOK) && (status & TxDescUnavail)) { RTL_W8(TxPoll, NPQ); /* set polling bit */ RTL_W16(IntrStatus, TxDescUnavail); } #ifdef CONFIG_R8168_NAPI if (status & rtl8168_napi_event) { tp->intr_mask = rtl8168_intr_mask & ~rtl8168_napi_event; RTL_W16(IntrMask, rtl8168_intr_mask & tp->intr_mask); if (likely(RTL_NETIF_RX_SCHEDULE_PREP(dev, &tp->napi))) { __RTL_NETIF_RX_SCHEDULE(dev, &tp->napi); } else if (netif_msg_intr(tp)) { printk(KERN_INFO "%s: interrupt %04x in poll\n", dev->name, status); } } break; #else /* Rx interrupt */ if (status & (RxOK | RxDescUnavail | RxFIFOOver)) { rtl8168_rx_interrupt(dev, tp, tp->mmio_addr, ~(u32)0); } /* Tx interrupt */ if (status & (TxOK | TxErr)) rtl8168_tx_interrupt(dev, tp, ioaddr); #endif boguscnt--; } while (boguscnt > 0); if (boguscnt <= 0) { if (netif_msg_intr(tp) && net_ratelimit() ) { printk(KERN_WARNING "%s: Too much work at interrupt!\n", dev->name); } /* Clear all interrupt sources. */ RTL_W16(IntrStatus, 0xffff); } out: RTL_W16(IntrMask, tp->intr_mask); return IRQ_RETVAL(handled); } #ifdef CONFIG_R8168_NAPI static int rtl8168_poll(napi_ptr napi, napi_budget budget) { struct rtl8168_private *tp = RTL_GET_PRIV(napi, struct rtl8168_private); void __iomem *ioaddr = tp->mmio_addr; RTL_GET_NETDEV(tp) unsigned int work_to_do = RTL_NAPI_QUOTA(budget, dev); unsigned int work_done; work_done = rtl8168_rx_interrupt(dev, tp, ioaddr, (u32) budget); rtl8168_tx_interrupt(dev, tp, ioaddr); RTL_NAPI_QUOTA_UPDATE(dev, work_done, budget); if (work_done < work_to_do) { RTL_NETIF_RX_COMPLETE(dev, napi); tp->intr_mask = rtl8168_intr_mask; /* * 20040426: the barrier is not strictly required but the * behavior of the irq handler could be less predictable * without it. Btw, the lack of flush for the posted pci * write is safe - FR */ smp_wmb(); RTL_W16(IntrMask, rtl8168_intr_mask); } return RTL_NAPI_RETURN_VALUE; } #endif//CONFIG_R8168_NAPI static void rtl8168_sleep_rx_enable(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; if ((tp->mcfg == CFG_METHOD_1) || (tp->mcfg == CFG_METHOD_2)) { RTL_W8(ChipCmd, CmdReset); rtl8168_rx_desc_offset0_init(tp, 0); RTL_W8(ChipCmd, CmdRxEnb); } } static void rtl8168_down(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; #if (LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)) && (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0)) unsigned int poll_locked = 0; #endif rtl8168_dsm(dev, DSM_IF_DOWN); netif_stop_queue(dev); rtl8168_delete_esd_timer(dev, &tp->esd_timer); rtl8168_delete_link_timer(dev, &tp->link_timer); #ifdef CONFIG_R8168_NAPI #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) napi_disable(&tp->napi); #endif #endif//CONFIG_R8168_NAPI core_down: spin_lock_irq(&tp->lock); rtl8168_asic_down(dev); rtl8168_sleep_rx_enable(dev); spin_unlock_irq(&tp->lock); synchronize_irq(dev->irq); #if (LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)) && (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0)) if (!poll_locked) { netif_poll_disable(dev); poll_locked++; } #endif #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,11) /* Give a racing hard_start_xmit a few cycles to complete. */ synchronize_sched(); /* FIXME: should this be synchronize_irq()? */ #endif /* * And now for the 50k$ question: are IRQ disabled or not ? * * Two paths lead here: * 1) dev->close * -> netif_running() is available to sync the current code and the * IRQ handler. See rtl8168_interrupt for details. * 2) dev->change_mtu * -> rtl8168_poll can not be issued again and re-enable the * interruptions. Let's simply issue the IRQ down sequence again. */ if (RTL_R16(IntrMask)) goto core_down; rtl8168_tx_clear(tp); rtl8168_rx_clear(tp); rtl8168_powerdown_pll(dev); } static int rtl8168_close(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; rtl8168_down(dev); free_irq(dev->irq, dev); pci_free_consistent(pdev, R8168_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); pci_free_consistent(pdev, R8168_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); tp->TxDescArray = NULL; tp->RxDescArray = NULL; return 0; } static void rtl8168_set_rx_mode(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; u32 mc_filter[2]; /* Multicast hash filter */ int i, j, k, rx_mode; u32 tmp = 0; if (dev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ if (netif_msg_link(tp)) { printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); } rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else if ((dev->mc_count > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else { struct dev_mc_list *mclist; rx_mode = AcceptBroadcast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); rx_mode |= AcceptMulticast; } } spin_lock_irqsave(&tp->lock, flags); tp->rtl8168_rx_config = rtl_chip_info[tp->chipset].RCR_Cfg; tmp = tp->rtl8168_rx_config | rx_mode | (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask); for (j = 0; j < 2; j++) { u32 mask = 0x000000ff; u32 tmp1 = 0; u32 tmp2 = 0; int x = 0; int y = 0; for (k = 0; k < 4; k++) { tmp1 = mc_filter[j] & mask; x = 32 - (8 + 16 * k); y = x - 2 * x; if (x > 0) tmp2 = tmp2 | (tmp1 << x); else tmp2 = tmp2 | (tmp1 >> y); mask = mask << 8; } mc_filter[j] = tmp2; } RTL_W32(RxConfig, tmp); RTL_W32(MAR0 + 0, mc_filter[1]); RTL_W32(MAR0 + 4, mc_filter[0]); spin_unlock_irqrestore(&tp->lock, flags); } /** * rtl8168_get_stats - Get rtl8168 read/write statistics * @dev: The Ethernet Device to get statistics for * * Get TX/RX statistics for rtl8168 */ static struct net_device_stats *rtl8168_get_stats(struct net_device *dev) { struct rtl8168_private *tp = netdev_priv(dev); unsigned long flags; if (netif_running(dev)) { spin_lock_irqsave(&tp->lock, flags); spin_unlock_irqrestore(&tp->lock, flags); } return &RTLDEV->stats; } #ifdef CONFIG_PM #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11) static int rtl8168_suspend(struct pci_dev *pdev, u32 state) #else static int rtl8168_suspend(struct pci_dev *pdev, pm_message_t state) #endif { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8168_private *tp = netdev_priv(dev); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) u32 pci_pm_state = pci_choose_state(pdev, state); #endif if (!netif_running(dev)) goto out; rtl8168_dsm(dev, DSM_NIC_GOTO_D3); rtl8168_powerdown_pll(dev); netif_device_detach(dev); netif_stop_queue(dev); spin_lock_irq(&tp->lock); rtl8168_asic_down(dev); rtl8168_sleep_rx_enable(dev); spin_unlock_irq(&tp->lock); out: #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) pci_save_state(pdev, &pci_pm_state); #else pci_save_state(pdev); #endif pci_enable_wake(pdev, pci_choose_state(pdev, state), tp->wol_enabled); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int rtl8168_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8168_private *tp = netdev_priv(dev); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) u32 pci_pm_state = PCI_D0; #endif pci_set_power_state(pdev, PCI_D0); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) pci_restore_state(pdev, &pci_pm_state); #else pci_restore_state(pdev); #endif pci_enable_wake(pdev, PCI_D0, 0); if (!netif_running(dev)) goto out; rtl8168_rx_desc_offset0_init(tp, 1); rtl8168_dsm(dev, DSM_NIC_RESUME_D3); netif_device_attach(dev); rtl8168_schedule_work(dev, rtl8168_reset_task); rtl8168_powerup_pll(dev); out: return 0; } #endif /* CONFIG_PM */ static struct pci_driver rtl8168_pci_driver = { .name = MODULENAME, .id_table = rtl8168_pci_tbl, .probe = rtl8168_init_one, .remove = __devexit_p(rtl8168_remove_one), #ifdef CONFIG_PM .suspend = rtl8168_suspend, .resume = rtl8168_resume, #endif }; static int __init rtl8168_init_module(void) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) return pci_register_driver(&rtl8168_pci_driver); #else return pci_module_init(&rtl8168_pci_driver); #endif } static void __exit rtl8168_cleanup_module(void) { pci_unregister_driver(&rtl8168_pci_driver); } module_init(rtl8168_init_module); module_exit(rtl8168_cleanup_module);